
Fig. 2. A sampling of initial conditions and resulting trajectories of
the motivating example system (2a)-(2b), projected down to T2 from the
full state space TT2 = TS1 ⇥ TS1, where the “small” axis of the torus
corresponds to ✓ and the “large” axis corresponds to �. All sampled
trajectories converge to (0, 0, 0, 0) 2 TT2, marked in red. Despite the
highly energetic and topologically complex behavior of the trajectories, our
results certify the almost global asymptotic stability of the system, without
the need to construct an explicit Lyapunov function for the full cascade.

term” to certify global asymptotic stability of cascades with
globally asymptotically stable subsystems [4].

These global results have important applications, but their
utility in geometric control is rather limited, since only
manifolds diffeomorphic to Rn admit smooth globally stable
vector fields [11], which the state space of e.g. free-flying
robotic systems is not (see [12] for a discussion). In the
smooth non-Euclidean setting, the most one can hope for
in either the subsystems or the cascade is almost global
asymptotic stability. This fact has motivated an almost global
notion of input to state stability [13], in which an asymptotic
gain condition holds for all but a measure zero set of initial
conditions; a cascade is then guaranteed to be almost globally
asymptotically stable if its outer loop is almost globally
input to state stable and its inner loop is almost globally
asymptotically stable. While almost global input to state
stability can be challenging to verify, this can be achieved
under certain conditions on the exponential instability of
other equilibria as well as the “ultimate boundedness” of
trajectories of the system under arbitrary disturbances [14].

However, not all almost globally asymptotically stable
cascades have an outer loop enjoying this property; indeed,
almost global input to state stability seems to be an inherently
stricter property than necessary, since it characterizes the
response of the system to arbitrary disturbances, while for
our purposes, the outer loop is almost always subjected to
a converging disturbance. Yet, the lack of a comprehensive
understanding of such systems has required bespoke sta-
bility certificates for almost globally asymptotically stable
cascaded controllers in practice, inhibiting generalization; for
example, a Lyapunov function for the full system may be
handcrafted via human intuition even though the cascaded
structure originally inspired the control design [3].

B. Motivating Example

To motivate the question at hand, we present a simple
representative example system. Consider a cascade of the
form (1a)-(1b) evolving on the tangent bundle of T2, where
x = (✓, ✓̇) 2 TS1, y = (�, �̇) 2 TS1, and we make the no-
tationally convenient identification TS1 ⇠= S1 ⇥ R. The dy-
namics are given by

✓̈ = �(sin ✓ + ✓̇) cos 2�, (2a)

�̈ = �(sin�+ �̇), (2b)

and a sampling of system trajectories is shown in Fig. 2.
Using the LaSalle function V : (�, �̇) 7! 1� cos�+ 1

2 �̇
2,

it can be shown that that (�, �̇) = (0, 0) is almost globally
asymptotically stable for the inner loop (2b). By the same
reasoning, (✓, ✓̇) = (0, 0) is also almost globally asymptoti-
cally stable for the dynamics given by restricting the outer
loop (2a) to the stable equilibrium of the inner loop.

In fact, it turns out that the entire cascade (2a)-(2b) is
almost globally asymptotically stable, but the system does
not satisfy the hypotheses of any of the previously discussed
results. In particular, the subsystems are not globally asymp-
totically stable, nor is there a time scale separation between
the loops. Furthermore, viewing (�, �̇) as a disturbance to
(2a), it can be seen that the outer loop is not almost globally
input to state stable [13, Def. 2.1], since the response to the
bounded disturbance (�, �̇) = (⇡/2, 0) grows unbounded
from almost all initial conditions. Nonetheless, the results
of this paper will guarantee the almost global asymptotic
stability of a class of systems that includes (2a)-(2b).

In what follows, we certify the almost global asymptotic
stability of cascade systems in the form of ⌃ in Fig. 1, using
qualitative, dynamical properties of the other subsystems
shown. In Sec. II, we present the main result, which pertains
to cascades in which ⌃x is almost globally asymptoti-
cally stable with all chain recurrent points being hyperbolic
equilibria, and ⌃y is almost globally asymptotically stable
and locally exponentially stable, and almost all forward
trajectories of ⌃ are precompact. Using induction, we show
that our approach extends also to longer cascades and more
generally to upper triangular systems as well. We also discuss
two broad and important classes of systems enjoying the
stated chain recurrence criteria. In Sec. III, we show that the
precompactness criteria (analogous the forward boundedness
of trajectories for a system in Rn) can be verified using a
growth rate inequality on the interconnection term coupling
the subsystems. In Sec. IV, we return to the motivating
example, before discussing the results and concluding the
paper in Secs. V and VI.

II. ALMOST GLOBAL ASYMPTOTIC STABILITY

We first give a brief review of relevant concepts from
dynamical systems theory, adopting the definitions of [15],
whose perspective on the behavior of asymptotically au-
tonomous semiflows is a central ingredient of our approach.
Definition 1. A nonautonomous semiflow on a smooth Rie-
mannian manifold (M,) is a continuous map

� : {(t, s) : 0  s  t < 1}⇥M ! M (3)

such that �(s, s, x) = x and �
�
t, s,�(s, r, x)

�
= �(t, r, x)

for all t � s � r > 0. A semiflow is called autonomous when
additionally, �(t+ r, s+ r, x) = �(t, s, x) for all r > 0.

In the previous, the parameters s and t can be thought of
as respective “start” and “end” times. Hereafter, we will use
the shorthands �(t,s) : M ! M, x 7! �(t, s, x) for nonau-
tonomous semiflows and �t : M ! M, x 7! �(t, 0, x) for
autonomous semiflows.
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Abstract— In this work, we give sufficient conditions for

the almost global asymptotic stability of a cascade in which

the inner loop and the unforced outer loop are each almost

globally asymptotically stable. Our qualitative approach relies

on the absence of chain recurrence for non-equilibrium points

of the unforced outer loop, the hyperbolicity of equilibria,

and the precompactness of forward trajectories. The result

is extended inductively to upper triangular systems with an

arbitrary number of subsystems. We show that the required

structure of the chain recurrent set can be readily verified, and

describe two important classes of systems with this property.

We also show that the precompactness requirement can be

verified by growth rate conditions on the interconnection term

coupling the subsystems. Our results stand in contrast to prior

works that require either global asymptotic stability of the

subsystems (impossible for smooth systems evolving on general

manifolds), time scale separation between the subsystems, or

strong disturbance robustness properties of the outer loop.

The approach has clear applications in stability certification

of cascaded controllers for systems evolving on manifolds.

I. INTRODUCTION

In this work, we are interested in the asymptotic stability
of cascade systems in the form

ẋ = f(x, y), (1a)
ẏ = g(y), (1b)

depicted graphically in in Fig. 1 as system ⌃. Throughout,
we assume that x and y evolve on X and Y , which are
smooth, connected Riemannian manifolds without boundary
(see Remark 1 for an explanation of the choice of setting).
We call (1b) the “inner loop” and (1a) the “outer loop”.

Cascades appear in many interesting and important physi-
cal systems. For example, many underactuated mechanical
systems can be rendered as a cascade after a feedback
transformation [1], and cascade structures appear often in
robotic systems, either intrinsically [2] or after control design
[3]. A long research tradition has studied the implications of
cascaded structure to simplify analysis and aid in control
[4]–[6]. This compositional approach is motivated by the
observation that control design for a subsystem is typically
easier, due to e.g. lower dimensionality, lower relative degree,
or full actuation. The primary difficulty that arises is to
ensure that the full system combining these subsystems
achieves the desired behavior, since only local (as opposed
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Fig. 1. We give sufficient conditions for the almost global asymptotic
stability of a cascade system ⌃ in terms of qualitative properties of the
closed loop systems ⌃y (the “inner loop”) and ⌃x (the unforced “outer
loop”) as well as growth rate conditions on the stateless I/O system ⌃h
(the “interconnection term”). Above, 0Y is the stable equilibrium of ⌃y .

to global) asymptotic stability is preserved under cascades
for general nonlinear systems [4].

A. Prior Work on Cascade Stability

Approaches to stability certification for nonlinear cascades
have exploited a wide range of structural features. Singular
perturbation techniques [7], [8] assume a time scale sepa-
ration between the “fast” inner loop and the “slow” outer
loop, and show that a system’s behavior tends toward that of
a “reduced” system as the ratio between convergence rates
tends to zero. However, this approach necessitates rapid inner
loop convergence (which can be especially challenging to
achieve for a control system with realistic input limitations).
Other approaches have relied on the robustness of the outer
loop to disturbances, leveraging the property of input to state
stability, which roughly requires the asymptotic response of
the system under a disturbance input to be bounded by the
size of the input (and therefore also implies global asymptotic
stability of the system in the absence of disturbances) [9]. A
classic result then establishes the global asymptotic stability
of a cascade for which the outer loop is input to state stable
and the inner loop is globally asymptotically stable [10].
Methods which avoid robustness and time scale assumptions
have relied on the local exponential stability of the inner
loop as well as growth restrictions on the “interconnection
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In this work, we are interested in the asymptotic stability
of cascade systems in the form

ẋ = f(x, y), (1a)
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depicted graphically in in Fig. 1 as system ⌃. Throughout,
we assume that x and y evolve on X and Y , which are
smooth, connected Riemannian manifolds without boundary
(see Remark 1 for an explanation of the choice of setting).
We call (1b) the “inner loop” and (1a) the “outer loop”.

Cascades appear in many interesting and important physi-
cal systems. For example, many underactuated mechanical
systems can be rendered as a cascade after a feedback
transformation [1], and cascade structures appear often in
robotic systems, either intrinsically [2] or after control design
[3]. A long research tradition has studied the implications of
cascaded structure to simplify analysis and aid in control
[4]–[6]. This compositional approach is motivated by the
observation that control design for a subsystem is typically
easier, due to e.g. lower dimensionality, lower relative degree,
or full actuation. The primary difficulty that arises is to
ensure that the full system combining these subsystems
achieves the desired behavior, since only local (as opposed
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Fig. 1. We give sufficient conditions for the almost global asymptotic
stability of a cascade system ⌃ in terms of qualitative properties of the
closed loop systems ⌃y (the “inner loop”) and ⌃x (the unforced “outer
loop”) as well as growth rate conditions on the stateless I/O system ⌃h
(the “interconnection term”). Above, 0Y is the stable equilibrium of ⌃y .

to global) asymptotic stability is preserved under cascades
for general nonlinear systems [4].

A. Prior Work on Cascade Stability

Approaches to stability certification for nonlinear cascades
have exploited a wide range of structural features. Singular
perturbation techniques [7], [8] assume a time scale sepa-
ration between the “fast” inner loop and the “slow” outer
loop, and show that a system’s behavior tends toward that of
a “reduced” system as the ratio between convergence rates
tends to zero. However, this approach necessitates rapid inner
loop convergence (which can be especially challenging to
achieve for a control system with realistic input limitations).
Other approaches have relied on the robustness of the outer
loop to disturbances, leveraging the property of input to state
stability, which roughly requires the asymptotic response of
the system under a disturbance input to be bounded by the
size of the input (and therefore also implies global asymptotic
stability of the system in the absence of disturbances) [9]. A
classic result then establishes the global asymptotic stability
of a cascade for which the outer loop is input to state stable
and the inner loop is globally asymptotically stable [10].
Methods which avoid robustness and time scale assumptions
have relied on the local exponential stability of the inner
loop as well as growth restrictions on the “interconnection
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H I E R A R C H I C A L  C O N T R O L L L E R

5

Motivation: Geometric Control of Robotic Systems

For hierarchical control, we want continuous outer loop feedback
(our intuition is that     evolves continuously, so            should too).z K(x) + dKx(ẋ)
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question: if the subsystems of a cascade are 

almost globally asymptotically stable,

when can we say the same about the combined system? 
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in other words: how can we certify almost global 

asymptotic stability in a compositional manner, in 

order to design verifiable hierarchical controllers?



Fig. 2. A sampling of initial conditions and resulting trajectories of
the motivating example system (2a)-(2b), projected down to T2 from the
full state space TT2 = TS1 ⇥ TS1, where the “small” axis of the torus
corresponds to ✓ and the “large” axis corresponds to �. All sampled
trajectories converge to (0, 0, 0, 0) 2 TT2, marked in red. Despite the
highly energetic and topologically complex behavior of the trajectories, our
results certify the almost global asymptotic stability of the system, without
the need to construct an explicit Lyapunov function for the full cascade.

term” to certify global asymptotic stability of cascades with
globally asymptotically stable subsystems [4].

These global results have important applications, but their
utility in geometric control is rather limited, since only
manifolds diffeomorphic to Rn admit smooth globally stable
vector fields [11], which the state space of e.g. free-flying
robotic systems is not (see [12] for a discussion). In the
smooth non-Euclidean setting, the most one can hope for
in either the subsystems or the cascade is almost global
asymptotic stability. This fact has motivated an almost global
notion of input to state stability [13], in which an asymptotic
gain condition holds for all but a measure zero set of initial
conditions; a cascade is then guaranteed to be almost globally
asymptotically stable if its outer loop is almost globally
input to state stable and its inner loop is almost globally
asymptotically stable. While almost global input to state
stability can be challenging to verify, this can be achieved
under certain conditions on the exponential instability of
other equilibria as well as the “ultimate boundedness” of
trajectories of the system under arbitrary disturbances [14].

However, not all almost globally asymptotically stable
cascades have an outer loop enjoying this property; indeed,
almost global input to state stability seems to be an inherently
stricter property than necessary, since it characterizes the
response of the system to arbitrary disturbances, while for
our purposes, the outer loop is almost always subjected to
a converging disturbance. Yet, the lack of a comprehensive
understanding of such systems has required bespoke sta-
bility certificates for almost globally asymptotically stable
cascaded controllers in practice, inhibiting generalization; for
example, a Lyapunov function for the full system may be
handcrafted via human intuition even though the cascaded
structure originally inspired the control design [3].

B. Motivating Example

To motivate the question at hand, we present a simple
representative example system. Consider a cascade of the
form (1a)-(1b) evolving on the tangent bundle of T2, where
x = (✓, ✓̇) 2 TS1, y = (�, �̇) 2 TS1, and we make the no-
tationally convenient identification TS1 ⇠= S1 ⇥ R. The dy-
namics are given by

✓̈ = �(sin ✓ + ✓̇) cos 2�, (2a)

�̈ = �(sin�+ �̇), (2b)

and a sampling of system trajectories is shown in Fig. 2.
Using the LaSalle function V : (�, �̇) 7! 1� cos�+ 1

2 �̇
2,

it can be shown that that (�, �̇) = (0, 0) is almost globally
asymptotically stable for the inner loop (2b). By the same
reasoning, (✓, ✓̇) = (0, 0) is also almost globally asymptoti-
cally stable for the dynamics given by restricting the outer
loop (2a) to the stable equilibrium of the inner loop.

In fact, it turns out that the entire cascade (2a)-(2b) is
almost globally asymptotically stable, but the system does
not satisfy the hypotheses of any of the previously discussed
results. In particular, the subsystems are not globally asymp-
totically stable, nor is there a time scale separation between
the loops. Furthermore, viewing (�, �̇) as a disturbance to
(2a), it can be seen that the outer loop is not almost globally
input to state stable [13, Def. 2.1], since the response to the
bounded disturbance (�, �̇) = (⇡/2, 0) grows unbounded
from almost all initial conditions. Nonetheless, the results
of this paper will guarantee the almost global asymptotic
stability of a class of systems that includes (2a)-(2b).

In what follows, we certify the almost global asymptotic
stability of cascade systems in the form of ⌃ in Fig. 1, using
qualitative, dynamical properties of the other subsystems
shown. In Sec. II, we present the main result, which pertains
to cascades in which ⌃x is almost globally asymptoti-
cally stable with all chain recurrent points being hyperbolic
equilibria, and ⌃y is almost globally asymptotically stable
and locally exponentially stable, and almost all forward
trajectories of ⌃ are precompact. Using induction, we show
that our approach extends also to longer cascades and more
generally to upper triangular systems as well. We also discuss
two broad and important classes of systems enjoying the
stated chain recurrence criteria. In Sec. III, we show that the
precompactness criteria (analogous the forward boundedness
of trajectories for a system in Rn) can be verified using a
growth rate inequality on the interconnection term coupling
the subsystems. In Sec. IV, we return to the motivating
example, before discussing the results and concluding the
paper in Secs. V and VI.

II. ALMOST GLOBAL ASYMPTOTIC STABILITY

We first give a brief review of relevant concepts from
dynamical systems theory, adopting the definitions of [15],
whose perspective on the behavior of asymptotically au-
tonomous semiflows is a central ingredient of our approach.
Definition 1. A nonautonomous semiflow on a smooth Rie-
mannian manifold (M,) is a continuous map

� : {(t, s) : 0  s  t < 1}⇥M ! M (3)

such that �(s, s, x) = x and �
�
t, s,�(s, r, x)

�
= �(t, r, x)

for all t � s � r > 0. A semiflow is called autonomous when
additionally, �(t+ r, s+ r, x) = �(t, s, x) for all r > 0.

In the previous, the parameters s and t can be thought of
as respective “start” and “end” times. Hereafter, we will use
the shorthands �(t,s) : M ! M, x 7! �(t, s, x) for nonau-
tonomous semiflows and �t : M ! M, x 7! �(t, 0, x) for
autonomous semiflows.

subsystems are almost globally asymptotically stable…. is the full system? 

Fig. 2. A sampling of initial conditions and resulting trajectories of
the motivating example system (2a)-(2b), projected down to T2 from the
full state space TT2 = TS1 ⇥ TS1, where the “small” axis of the torus
corresponds to ✓ and the “large” axis corresponds to �. All sampled
trajectories converge to (0, 0, 0, 0) 2 TT2, marked in red. Despite the
highly energetic and topologically complex behavior of the trajectories, our
results certify the almost global asymptotic stability of the system, without
the need to construct an explicit Lyapunov function for the full cascade.

term” to certify global asymptotic stability of cascades with
globally asymptotically stable subsystems [4].

These global results have important applications, but their
utility in geometric control is rather limited, since only
manifolds diffeomorphic to Rn admit smooth globally stable
vector fields [11], which the state space of e.g. free-flying
robotic systems is not (see [12] for a discussion). In the
smooth non-Euclidean setting, the most one can hope for
in either the subsystems or the cascade is almost global
asymptotic stability. This fact has motivated an almost global
notion of input to state stability [13], in which an asymptotic
gain condition holds for all but a measure zero set of initial
conditions; a cascade is then guaranteed to be almost globally
asymptotically stable if its outer loop is almost globally
input to state stable and its inner loop is almost globally
asymptotically stable. While almost global input to state
stability can be challenging to verify, this can be achieved
under certain conditions on the exponential instability of
other equilibria as well as the “ultimate boundedness” of
trajectories of the system under arbitrary disturbances [14].

However, not all almost globally asymptotically stable
cascades have an outer loop enjoying this property; indeed,
almost global input to state stability seems to be an inherently
stricter property than necessary, since it characterizes the
response of the system to arbitrary disturbances, while for
our purposes, the outer loop is almost always subjected to
a converging disturbance. Yet, the lack of a comprehensive
understanding of such systems has required bespoke sta-
bility certificates for almost globally asymptotically stable
cascaded controllers in practice, inhibiting generalization; for
example, a Lyapunov function for the full system may be
handcrafted via human intuition even though the cascaded
structure originally inspired the control design [3].

B. Motivating Example

To motivate the question at hand, we present a simple
representative example system. Consider a cascade of the
form (1a)-(1b) evolving on the tangent bundle of T2, where
x = (✓, ✓̇) 2 TS1, y = (�, �̇) 2 TS1, and we make the no-
tationally convenient identification TS1 ⇠= S1 ⇥ R. The dy-
namics are given by

✓̈ = �(sin ✓ + ✓̇) cos 2�, (2a)

�̈ = �(sin�+ �̇), (2b)

and a sampling of system trajectories is shown in Fig. 2.
Using the LaSalle function V : (�, �̇) 7! 1� cos�+ 1

2 �̇
2,

it can be shown that that (�, �̇) = (0, 0) is almost globally
asymptotically stable for the inner loop (2b). By the same
reasoning, (✓, ✓̇) = (0, 0) is also almost globally asymptoti-
cally stable for the dynamics given by restricting the outer
loop (2a) to the stable equilibrium of the inner loop.

In fact, it turns out that the entire cascade (2a)-(2b) is
almost globally asymptotically stable, but the system does
not satisfy the hypotheses of any of the previously discussed
results. In particular, the subsystems are not globally asymp-
totically stable, nor is there a time scale separation between
the loops. Furthermore, viewing (�, �̇) as a disturbance to
(2a), it can be seen that the outer loop is not almost globally
input to state stable [13, Def. 2.1], since the response to the
bounded disturbance (�, �̇) = (⇡/2, 0) grows unbounded
from almost all initial conditions. Nonetheless, the results
of this paper will guarantee the almost global asymptotic
stability of a class of systems that includes (2a)-(2b).

In what follows, we certify the almost global asymptotic
stability of cascade systems in the form of ⌃ in Fig. 1, using
qualitative, dynamical properties of the other subsystems
shown. In Sec. II, we present the main result, which pertains
to cascades in which ⌃x is almost globally asymptoti-
cally stable with all chain recurrent points being hyperbolic
equilibria, and ⌃y is almost globally asymptotically stable
and locally exponentially stable, and almost all forward
trajectories of ⌃ are precompact. Using induction, we show
that our approach extends also to longer cascades and more
generally to upper triangular systems as well. We also discuss
two broad and important classes of systems enjoying the
stated chain recurrence criteria. In Sec. III, we show that the
precompactness criteria (analogous the forward boundedness
of trajectories for a system in Rn) can be verified using a
growth rate inequality on the interconnection term coupling
the subsystems. In Sec. IV, we return to the motivating
example, before discussing the results and concluding the
paper in Secs. V and VI.

II. ALMOST GLOBAL ASYMPTOTIC STABILITY

We first give a brief review of relevant concepts from
dynamical systems theory, adopting the definitions of [15],
whose perspective on the behavior of asymptotically au-
tonomous semiflows is a central ingredient of our approach.
Definition 1. A nonautonomous semiflow on a smooth Rie-
mannian manifold (M,) is a continuous map
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results certify the almost global asymptotic stability of the system, without
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term” to certify global asymptotic stability of cascades with
globally asymptotically stable subsystems [4].

These global results have important applications, but their
utility in geometric control is rather limited, since only
manifolds diffeomorphic to Rn admit smooth globally stable
vector fields [11], which the state space of e.g. free-flying
robotic systems is not (see [12] for a discussion). In the
smooth non-Euclidean setting, the most one can hope for
in either the subsystems or the cascade is almost global
asymptotic stability. This fact has motivated an almost global
notion of input to state stability [13], in which an asymptotic
gain condition holds for all but a measure zero set of initial
conditions; a cascade is then guaranteed to be almost globally
asymptotically stable if its outer loop is almost globally
input to state stable and its inner loop is almost globally
asymptotically stable. While almost global input to state
stability can be challenging to verify, this can be achieved
under certain conditions on the exponential instability of
other equilibria as well as the “ultimate boundedness” of
trajectories of the system under arbitrary disturbances [14].

However, not all almost globally asymptotically stable
cascades have an outer loop enjoying this property; indeed,
almost global input to state stability seems to be an inherently
stricter property than necessary, since it characterizes the
response of the system to arbitrary disturbances, while for
our purposes, the outer loop is almost always subjected to
a converging disturbance. Yet, the lack of a comprehensive
understanding of such systems has required bespoke sta-
bility certificates for almost globally asymptotically stable
cascaded controllers in practice, inhibiting generalization; for
example, a Lyapunov function for the full system may be
handcrafted via human intuition even though the cascaded
structure originally inspired the control design [3].

B. Motivating Example

To motivate the question at hand, we present a simple
representative example system. Consider a cascade of the
form (1a)-(1b) evolving on the tangent bundle of T2, where
x = (✓, ✓̇) 2 TS1, y = (�, �̇) 2 TS1, and we make the no-
tationally convenient identification TS1 ⇠= S1 ⇥ R. The dy-
namics are given by

✓̈ = �(sin ✓ + ✓̇) cos 2�, (2a)

�̈ = �(sin�+ �̇), (2b)

and a sampling of system trajectories is shown in Fig. 2.
Using the LaSalle function V : (�, �̇) 7! 1� cos�+ 1
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it can be shown that that (�, �̇) = (0, 0) is almost globally
asymptotically stable for the inner loop (2b). By the same
reasoning, (✓, ✓̇) = (0, 0) is also almost globally asymptoti-
cally stable for the dynamics given by restricting the outer
loop (2a) to the stable equilibrium of the inner loop.

In fact, it turns out that the entire cascade (2a)-(2b) is
almost globally asymptotically stable, but the system does
not satisfy the hypotheses of any of the previously discussed
results. In particular, the subsystems are not globally asymp-
totically stable, nor is there a time scale separation between
the loops. Furthermore, viewing (�, �̇) as a disturbance to
(2a), it can be seen that the outer loop is not almost globally
input to state stable [13, Def. 2.1], since the response to the
bounded disturbance (�, �̇) = (⇡/2, 0) grows unbounded
from almost all initial conditions. Nonetheless, the results
of this paper will guarantee the almost global asymptotic
stability of a class of systems that includes (2a)-(2b).

In what follows, we certify the almost global asymptotic
stability of cascade systems in the form of ⌃ in Fig. 1, using
qualitative, dynamical properties of the other subsystems
shown. In Sec. II, we present the main result, which pertains
to cascades in which ⌃x is almost globally asymptoti-
cally stable with all chain recurrent points being hyperbolic
equilibria, and ⌃y is almost globally asymptotically stable
and locally exponentially stable, and almost all forward
trajectories of ⌃ are precompact. Using induction, we show
that our approach extends also to longer cascades and more
generally to upper triangular systems as well. We also discuss
two broad and important classes of systems enjoying the
stated chain recurrence criteria. In Sec. III, we show that the
precompactness criteria (analogous the forward boundedness
of trajectories for a system in Rn) can be verified using a
growth rate inequality on the interconnection term coupling
the subsystems. In Sec. IV, we return to the motivating
example, before discussing the results and concluding the
paper in Secs. V and VI.
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Definition 2. The equilibrium set of an autonomous semi-
flow � is the set E(�) = {x : �t(x) = x 8 t � 0}.
Definition 3. For an autonomous semiflow � on (M,)
and constants ", T > 0, an (", T )-chain is a pair of finite
sequences (x0, x1, . . . , xn) and (t1, t2, . . . , tn) satisfying

dist
�
�ti(xi�1), xi

�
< " and ti > T, i = 1, 2, . . . , n, (4)

where dist : M ⇥M ! R is the distance function induced
by . A closed (", T )-chain at x has x = x0 = xn.
Definition 4. The chain recurrent set of an autonomous
semiflow � is the set R(�) consisting of all points at which
there exists a closed (", T )-chain for all ", T > 0.
Remark 1. We define chain recurrence using (", T )-chains
with respect to a distance function and some " > 0 (versus
using positive functions for " [16] or (U , T )-chains [17])
because we rely on the results of [15], in which the same
choice is made. The choice of a distance function induced by
a Riemannian metric is appropriate for our purposes, since
hyperbolic equilibria are locally exponentially stable with
respect to any such distance function.
Definition 5. A nonautonomous semiflow � is asymptoti-
cally autonomous with limit semiflow ⇥ if for any sequences
tj ! t, sj ! 1, and xj ! x,

�(tj+sj ,sj)
y0

(xj) ! ⇥t(x) as j ! 1, (5)

where ⇥t is an autonomous semiflow.
Definition 6. An equilibrium is almost globally asymptot-
ically stable if it is (locally) asymptotically stable and its
basin of attraction is full measure and residual, i.e. its
complement is measure zero and meager (the countable
union of nowhere dense sets).

A. Main Result
Theorem 1 (Almost Global Asymptotic Stability of Cas-
cade). Consider the cascade on X ⇥ Y given by

ẋ = f(x, y), (6a)
ẏ = g(y). (6b)

Suppose the following conditions hold:
1. 0Y 2 Y is a hyperbolic almost globally asymptotically

stable equilibrium of (6b), with basin of attraction BY .
2. 0X 2 X is an almost globally asymptotically stable equi-

librium of the dynamics

ẋ = f(x, 0Y ), (7)

and all chain recurrent points of (7) are hyperbolic
equilibria.

3. For any x0 2 X and y0 2 BY , the forward trajectory of
(6a)-(6b) starting at (x0, y0) is precompact.

Then, (0X , 0Y ) is almost globally asymptotically stable and
locally exponentially stable for the cascade (6a)-(6b).

Proof. Since X ⇥ BY is invariant for (6a)-(6b) and all
forward trajectories beginning in X ⇥ BY have compact
closure, the cascade induces an autonomous semiflow

 t : X ⇥ BY ! X ⇥ BY . (8)

Similarly, (7) and (6b) induce the autonomous semiflows

⇥t : X ! X, x0 7! pr1 � t(x0, 0Y ), (9a)
⌥t : BY ! BY , y0 7! pr2 � t(0X , y0), (9b)

where pr1 and pr2 are the natural projections onto X and Y ,
and we have carefully chosen the domains of the semiflows.
We observe that for each initial condition y0 2 BY , (6a) may
be interpreted as time-varying dynamics on X given by

ẋ = f
�
x,⌥t(y0)

�
. (10)

In this manner, each initial condition y0 2 BY induces a
corresponding nonautonomous semiflow on X given by

�(t,s)
y0

: X ! X, x0 7! pr1 � t�s
�
x0,⌥

s(y0)
�
, (11)

such that we may also conclude

 t(x0, y0) =
�
�(t,0)

y0
(x0),⌥

t(y0)
�
. (12)

With these facts in mind, we prove the claim in five steps.
STEP 1. E( ) = R(⇥)⇥ {0Y }, and all points in this set are
hyperbolic equilibria, of which only (0X , 0Y ) is stable.

Proof. All equilibria (x, y) 2 X ⇥ BY must have y = 0Y
by the definition of BY as a basin of attraction, and
therefore it must also hold that f(x, 0Y ) = 0 i.e. x must
be an equilibrium of (7). The equality then follows from
the assumption that R(⇥) ✓ E(⇥), since equilibria are al-
ways chain recurrent i.e. E(⇥) ✓ R(⇥). Denoting the vector
field on X ⇥ Y describing the full cascade (6a)-(6b) by
F : (x, y) 7!

�
f(x, y), g(y)

�
, we may express its lineariza-

tion at any equilibrium (x, 0Y ) 2 X ⇥ BY as

dF |(x,0Y ) =


@xf |(x,0Y ) @yf |(x,0Y )

0 @yg | 0Y

�
. (13)

Since the eigenvalues of a triangular block matrix are simply
the eigenvalues of the blocks on the diagonal, the claim of
hyperbolicity follows directly from the hyperbolicity of 0Y
for (6b) and the hyperbolicity of all equilibria of (7). Further-
more, an almost globally asymptotically stable system has
exactly one stable equilibrium, so at x = 0X all eigenvalues
of the top left block have negative real part, but at least one
eigenvalue has positive real part at all other equilibria of (7).
Therefore (0X , 0Y ) is locally exponentially stable, while all
other equilibria in X ⇥ BY are unstable. H

To complete the proof, it will therefore suffice to show that
the stable equilibrium (0X , 0Y ) is almost globally attractive.
STEP 2. For any y0 2 BY , the nonautonomous semiflow �y0

is asymptotically autonomous with limit semiflow ⇥.

Proof. For any sequences tj ! t, sj ! 1, and xj ! x,

lim
j!1

�(tj+sj ,sj)
y0

(xj)

= lim
j!1

pr1 � tj
�
xj ,⌥

sj (y0)
� (14)

= pr1 � 
lim

j!1
tj
✓

lim
j!1

xj , lim
j!1

⌥sj (y0)

◆
(15)

= pr1 � t(x, 0Y ) = ⇥
t(x), (16)
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We observe that for each initial condition y0 2 BY , (6a) may
be interpreted as time-varying dynamics on X given by
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hyperbolicity follows directly from the hyperbolicity of 0Y
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To complete the proof, it will therefore suffice to show that
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ẏ = g(y). (6b)

Suppose the following conditions hold:
1. 0Y 2 Y is a hyperbolic almost globally asymptotically

stable equilibrium of (6b), with basin of attraction BY .
2. 0X 2 X is an almost globally asymptotically stable equi-

librium of the dynamics
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A system is called gradient-like if all its chain recurrent points are equilibria.

1 .  G R A D I E N T  S Y S T E M S

Remark 3. From Corollary 3, it is clear that Theorem 1 also
holds if its second condition is replaced by the assumption
that for the system (7), all equilibria are hyperbolic and there
exists a Lyapunov function around 0X which is decreasing
along all non-equilibrium trajectories.3

As a matter of fact, certain systems already prominent in
the geometric control literature are gradient-like.
Remark 4. Two important classes of systems verifying
Theorem 3 (and the second condition of Theorem 1) are
as follows. It can be shown that for a Riemannian manifold
(Q,), a strict Rayleigh dissipation ⌫, and a proper Morse
function V : Q ! [0,1) with a unique minimum at 0Q 2 Q,
both the gradient dynamics on Q given by

q̇ = �grad V (q) (19)

and Euler-Lagrange dynamics on TQ given by4


rq̇ q̇ = �grad V (q)� ] � ⌫[(q̇) (20)

are almost globally asymptotically stable and locally expo-
nentially stable around 0Q 2 Q and 0TQ = (0Q, 0) 2 TQ
respectively, and moreover all chain recurrent points of
both systems are hyperbolic equilibria. An early, influential
analysis of the previous stability properties is [21], while a
detailed modern treatment can be found in [20, Chap. 6].
The chain recurrence claim is immediate by Theorem 3 and
the fact that the “potential” V and the “total energy”

W : (q, q̇) 7! V (q) +
1

2
(q̇, q̇), (21)

are respectively decreasing along all non-equilibrium trajec-
tories of (45) (by construction) and (20) [20, Prop. 4.66].
Proofs of these facts can be found in Appendix B.

III. PRECOMPACTNESS OF FORWARD TRAJECTORIES

To apply Theorem 1 to examples, we require practical
conditions certifying precompactness, since many manifolds
of interest in geometric control are noncompact, such as the
tangent bundle of any manifold. In Rn or any Riemannian
manifold given a complete Riemannian metric, a subset is
compact if and only if it is closed and bounded, so in
those settings precompactness amounts to boundedness. In-
formally, such an assumption prevents the finite time escape
of any trajectory before the inner loop has the chance to con-
verge. In this section, we give a growth rate criterion suited
to our geometric setting, characterizing the “interconnection
term” (Fig. 1, system ⌃h). The result bears similarities to [4,
Thm. 4.7] certifying boundedness in systems in Rn.

Theorem 2 (Precompact Forward Trajectories of Cascade).
Consider the cascade on X ⇥ Y given by

ẋ = f(x, y), (22a)
ẏ = g(y). (22b)

3Some authors [18] call this a strict Lyapunov function, but the control
community tends to reserve this term for Lyapunov functions with strictly
negative derivative along non-constant trajectories [19], a stronger condition.

4The maps [, ⌫[ : TQ ! T ⇤Q and ], ⌫] : T ⇤Q ! TQ are the mu-
sical isomorphisms with respect to the Riemannian metrics  and ⌫ [20].

Let 0Y 2 Y be a stable hyperbolic equilibrium of (22b) with
basin of attraction BY , and define the interconnection term

h : X ⇥ Y ! TX, (x, y) 7! f(x, y)� f(x, 0Y ). (23)

Suppose that the following conditions hold:
1. The proper, differentiable function

W : X ! R�0 (24)

is a (non-strict) Lyapunov function for the system

ẋ = f(x, 0Y ). (25)

2. There exists some c 2 R and continuous functions

↵, � : BY ! R�0 (26)

which are vanishing and differentiable at 0Y and

Lh(x,y)W  ↵(y)W (x) + �(y), (27)

for all (x, y) such that W (x) � c and y 2 BY .
Then, the forward trajectory of (22a)-(22b) through any
initial condition (x0, y0) 2 X ⇥ BY is precompact.

Proof. Since W is a proper Lyapunov function for (25), the
forward trajectory through any initial condition of the form
(x0, 0Y ) is precompact, so it suffices to consider initial con-
ditions (x0, y0) with y0 6= 0Y . Fix (x0, y0) 2 X ⇥BY with
y0 6= 0Y and let

�
x(t), y(t)

�
denote its forward trajectory.

We prove the claim in two steps.
STEP 1. There exist positive constants A, B, and ! such that
↵
�
y(t)

�
 Ae�!t and �

�
y(t)

�
 Be�!t for all t � 0.

Proof. Let d(t) := dist(y(t), 0Y ) > 0. Since a stable hyper-
bolic equilibrium is locally exponentially stable with respect
to the distance associated to any continuous Riemannian
metric, there exist C0,! > 0 such that, for all t � 0,

d(t)  C0e
�!t. (28)

Next, since ↵ and � are vanishing and differentiable at 0Y ,
a local coordinate calculation (using uniform equivalence of
continuous Riemannian metrics over compact sets) shows

lim sup
t!1

↵
�
y(t)

�

d(t)
< 1, lim sup

t!1

�
�
y(t)

�

d(t)
< 1. (29)

Since the above quotients are also continuous functions of t,
it follows that they are bounded. Hence there exist C1, C2 >
0 such that ↵(y(t))/d(t) < C1 and �(y(t))/d(t) < C2 for
all t � 0. When combined with (28), we obtain the desired
bounds, where A := C0C1 and B := C0C2. H

STEP 2. W
�
x(t)

�
is bounded for all t > 0.

Proof. Since W is a Lyapunov function for (25), we have

Ẇ = Lf(x,0Y )+h(x,y)W  Lh(x,y)W. (30)

Consider any t2 � t1 � 0 such that W (x([t1, t2])) ✓ [c,1).
Then for all t 2 [t1, t2], (27), (30), and the conclusion of the
previous step imply that

d
dtW

�
x(t)

�
 Ae�!t W

�
x(t)

�
+Be�!t. (31)

Riemannian metric

Remark 3. From Corollary 3, it is clear that Theorem 1 also
holds if its second condition is replaced by the assumption
that for the system (7), all equilibria are hyperbolic and there
exists a Lyapunov function around 0X which is decreasing
along all non-equilibrium trajectories.3

As a matter of fact, certain systems already prominent in
the geometric control literature are gradient-like.
Remark 4. Two important classes of systems verifying
Theorem 3 (and the second condition of Theorem 1) are
as follows. It can be shown that for a Riemannian manifold
(Q,), a strict Rayleigh dissipation ⌫, and a proper Morse
function V : Q ! [0,1) with a unique minimum at 0Q 2 Q,
both the gradient dynamics on Q given by

q̇ = �grad V (q) (19)

and Euler-Lagrange dynamics on TQ given by4


rq̇ q̇ = �grad V (q)� ] � ⌫[(q̇) (20)

are almost globally asymptotically stable and locally expo-
nentially stable around 0Q 2 Q and 0TQ = (0Q, 0) 2 TQ
respectively, and moreover all chain recurrent points of
both systems are hyperbolic equilibria. An early, influential
analysis of the previous stability properties is [21], while a
detailed modern treatment can be found in [20, Chap. 6].
The chain recurrence claim is immediate by Theorem 3 and
the fact that the “potential” V and the “total energy”

W : (q, q̇) 7! V (q) +
1

2
(q̇, q̇), (21)

are respectively decreasing along all non-equilibrium trajec-
tories of (45) (by construction) and (20) [20, Prop. 4.66].
Proofs of these facts can be found in Appendix B.

III. PRECOMPACTNESS OF FORWARD TRAJECTORIES

To apply Theorem 1 to examples, we require practical
conditions certifying precompactness, since many manifolds
of interest in geometric control are noncompact, such as the
tangent bundle of any manifold. In Rn or any Riemannian
manifold given a complete Riemannian metric, a subset is
compact if and only if it is closed and bounded, so in
those settings precompactness amounts to boundedness. In-
formally, such an assumption prevents the finite time escape
of any trajectory before the inner loop has the chance to con-
verge. In this section, we give a growth rate criterion suited
to our geometric setting, characterizing the “interconnection
term” (Fig. 1, system ⌃h). The result bears similarities to [4,
Thm. 4.7] certifying boundedness in systems in Rn.

Theorem 2 (Precompact Forward Trajectories of Cascade).
Consider the cascade on X ⇥ Y given by

ẋ = f(x, y), (22a)
ẏ = g(y). (22b)

3Some authors [18] call this a strict Lyapunov function, but the control
community tends to reserve this term for Lyapunov functions with strictly
negative derivative along non-constant trajectories [19], a stronger condition.

4The maps [, ⌫[ : TQ ! T ⇤Q and ], ⌫] : T ⇤Q ! TQ are the mu-
sical isomorphisms with respect to the Riemannian metrics  and ⌫ [20].

Let 0Y 2 Y be a stable hyperbolic equilibrium of (22b) with
basin of attraction BY , and define the interconnection term

h : X ⇥ Y ! TX, (x, y) 7! f(x, y)� f(x, 0Y ). (23)

Suppose that the following conditions hold:
1. The proper, differentiable function

W : X ! R�0 (24)

is a (non-strict) Lyapunov function for the system

ẋ = f(x, 0Y ). (25)

2. There exists some c 2 R and continuous functions

↵, � : BY ! R�0 (26)

which are vanishing and differentiable at 0Y and

Lh(x,y)W  ↵(y)W (x) + �(y), (27)

for all (x, y) such that W (x) � c and y 2 BY .
Then, the forward trajectory of (22a)-(22b) through any
initial condition (x0, y0) 2 X ⇥ BY is precompact.

Proof. Since W is a proper Lyapunov function for (25), the
forward trajectory through any initial condition of the form
(x0, 0Y ) is precompact, so it suffices to consider initial con-
ditions (x0, y0) with y0 6= 0Y . Fix (x0, y0) 2 X ⇥BY with
y0 6= 0Y and let

�
x(t), y(t)

�
denote its forward trajectory.

We prove the claim in two steps.
STEP 1. There exist positive constants A, B, and ! such that
↵
�
y(t)

�
 Ae�!t and �

�
y(t)

�
 Be�!t for all t � 0.

Proof. Let d(t) := dist(y(t), 0Y ) > 0. Since a stable hyper-
bolic equilibrium is locally exponentially stable with respect
to the distance associated to any continuous Riemannian
metric, there exist C0,! > 0 such that, for all t � 0,

d(t)  C0e
�!t. (28)

Next, since ↵ and � are vanishing and differentiable at 0Y ,
a local coordinate calculation (using uniform equivalence of
continuous Riemannian metrics over compact sets) shows

lim sup
t!1

↵
�
y(t)

�

d(t)
< 1, lim sup

t!1

�
�
y(t)

�

d(t)
< 1. (29)

Since the above quotients are also continuous functions of t,
it follows that they are bounded. Hence there exist C1, C2 >
0 such that ↵(y(t))/d(t) < C1 and �(y(t))/d(t) < C2 for
all t � 0. When combined with (28), we obtain the desired
bounds, where A := C0C1 and B := C0C2. H

STEP 2. W
�
x(t)

�
is bounded for all t > 0.

Proof. Since W is a Lyapunov function for (25), we have

Ẇ = Lf(x,0Y )+h(x,y)W  Lh(x,y)W. (30)

Consider any t2 � t1 � 0 such that W (x([t1, t2])) ✓ [c,1).
Then for all t 2 [t1, t2], (27), (30), and the conclusion of the
previous step imply that

d
dtW

�
x(t)

�
 Ae�!t W

�
x(t)

�
+Be�!t. (31)

strict Rayleigh dissipation (damping)

potential energy

kinetic energy metric

2 .  D I S S I P A T I V E  M E C H A N I C A L  S Y S T E M S

3 .  G L O B A L L Y  A S Y M P T O T I C A L L Y  S T A B L E  S Y S T E M S

4 .  S Y S T E M S  w /  A  D E C R E A S I N G  L Y A P U N O V  F U N C T I O N

Under mild assumptions, all the following are gradient-like systems:

cost function
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Main Result: Almost Global Asymptotic Stability of Cascades

A Compositional Approach to Certifying the Almost
Global Asymptotic Stability of Cascade Systems

Jake Welde, Matthew D. Kvalheim, and Vijay Kumar

Abstract— In this work, we give sufficient conditions for

the almost global asymptotic stability of a cascade in which

the inner loop and the unforced outer loop are each almost

globally asymptotically stable. Our qualitative approach relies

on the absence of chain recurrence for non-equilibrium points

of the unforced outer loop, the hyperbolicity of equilibria,

and the precompactness of forward trajectories. The result

is extended inductively to upper triangular systems with an

arbitrary number of subsystems. We show that the required

structure of the chain recurrent set can be readily verified, and

describe two important classes of systems with this property.

We also show that the precompactness requirement can be

verified by growth rate conditions on the interconnection term

coupling the subsystems. Our results stand in contrast to prior

works that require either global asymptotic stability of the

subsystems (impossible for smooth systems evolving on general

manifolds), time scale separation between the subsystems, or

strong disturbance robustness properties of the outer loop.

The approach has clear applications in stability certification

of cascaded controllers for systems evolving on manifolds.

I. INTRODUCTION

In this work, we are interested in the asymptotic stability
of cascade systems in the form

ẋ = f(x, y), (1a)
ẏ = g(y), (1b)

depicted graphically in in Fig. 1 as system ⌃. Throughout,
we assume that x and y evolve on X and Y , which are
smooth, connected Riemannian manifolds without boundary
(see Remark 1 for an explanation of the choice of setting).
We call (1b) the “inner loop” and (1a) the “outer loop”.

Cascades appear in many interesting and important physi-
cal systems. For example, many underactuated mechanical
systems can be rendered as a cascade after a feedback
transformation [1], and cascade structures appear often in
robotic systems, either intrinsically [2] or after control design
[3]. A long research tradition has studied the implications of
cascaded structure to simplify analysis and aid in control
[4]–[6]. This compositional approach is motivated by the
observation that control design for a subsystem is typically
easier, due to e.g. lower dimensionality, lower relative degree,
or full actuation. The primary difficulty that arises is to
ensure that the full system combining these subsystems
achieves the desired behavior, since only local (as opposed

J. Welde and V. Kumar are with the GRASP Laboratory at
the University of Pennsylvania, while M. D. Kvalheim is with the
Department of Mathematics at the University of Michigan. emails:
{jwelde,kumar}@seas.upenn.edu, kvalheim@umich.edu. We
gratefully acknowledge the support of Qualcomm Research, NSF Grant
CCR-2112665, and the NSF Graduate Research Fellowship Program.
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g( ·)
R

⌃ : f( · , ·)
Ryẏ xẋ
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Fig. 1. We give sufficient conditions for the almost global asymptotic
stability of a cascade system ⌃ in terms of qualitative properties of the
closed loop systems ⌃y (the “inner loop”) and ⌃x (the unforced “outer
loop”) as well as growth rate conditions on the stateless I/O system ⌃h
(the “interconnection term”). Above, 0Y is the stable equilibrium of ⌃y .

to global) asymptotic stability is preserved under cascades
for general nonlinear systems [4].

A. Prior Work on Cascade Stability

Approaches to stability certification for nonlinear cascades
have exploited a wide range of structural features. Singular
perturbation techniques [7], [8] assume a time scale sepa-
ration between the “fast” inner loop and the “slow” outer
loop, and show that a system’s behavior tends toward that of
a “reduced” system as the ratio between convergence rates
tends to zero. However, this approach necessitates rapid inner
loop convergence (which can be especially challenging to
achieve for a control system with realistic input limitations).
Other approaches have relied on the robustness of the outer
loop to disturbances, leveraging the property of input to state
stability, which roughly requires the asymptotic response of
the system under a disturbance input to be bounded by the
size of the input (and therefore also implies global asymptotic
stability of the system in the absence of disturbances) [9]. A
classic result then establishes the global asymptotic stability
of a cascade for which the outer loop is input to state stable
and the inner loop is globally asymptotically stable [10].
Methods which avoid robustness and time scale assumptions
have relied on the local exponential stability of the inner
loop as well as growth restrictions on the “interconnection
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U N F O R C E D  
O U T E R

S U B S Y S T E M

Theorem (Welde, Kvalheim, and Kumar). Suppose that and are almost
globally asymptotically stable, and and all chain recurrent points of are
hyperbolic equilibria. Then, is almost globally asymptotically stable and locally
exponentially stable as long as all forward trajectories are bounded.

Σ

Σx Σy

0Y Σx

(Some of these assumptions can be relaxed; here we state a simpler result for clarity.)
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Sketch of Proof for Main Result
Theorem (Welde, Kvalheim, and Kumar). Suppose that and are almost
globally asymptotically stable, and and all chain recurrent points of are
hyperbolic equilibria. Then, is almost globally asymptotically stable and locally
exponentially stable as long as all forward trajectories are bounded.

Σ

Σx Σy

0Y Σx

(Some of these assumptions can be relaxed; here we state a simpler result for clarity.)

Sketch of the Proof: 
- For each converging initial condition         ,                           generates an 

asymptotically autonomous semiflow with limit semiflow
- Bounded trajectories of asymptotically autonomous semiflows converge to the 

chain recurrent set of the limit semiflow (Mischaikow, Smith and Thieme)
- Thus, each                     converges to some hyperbolic equilibrium
- By the stable manifold theorem, almost no solutions converge to unstable

y(0) ẋ = f (x, y(t))

ẋ = f (x, 0Y )

(x(t), y(t)) (x!, 0Y )

(x!, 0Y )



Corollary (Welde, Kvalheim, and Kumar). Consider an upper triangular system

where for all the unforced system

is almost globally asymptotically stable with respect to and all chain
recurrent points are hyperbolic equilibria. Then, the full system is almost
globally asymptotically stable and locally exponentially stable with respect to

if all its forward trajectories are bounded.

and asymptotic stability of (6b) ensures that every trajectory
of ⌥ converges to 0Y . Thus, in view of (12) it is clear that
every trajectory of  converges to R(⇥)⇥ {0Y }, and all
points in this set are hyperbolic equilibria by Step 1. Since
hyperbolic equilibria are isolated, by continuity every trajec-
tory converges to a particular hyperbolic equilibrium. H

STEP 4. Almost no trajectories of (6a)-(6b) converge to an
unstable equilibrium.

Proof. All points converging to a hyperbolic equilibrium
lie on its global stable manifold, which (for an unstable
equilibrium) is the union of countably many embedded
submanifolds of positive codimension (see [14, p. 73] or
[15, Sec. 2.1]). Hence, this is a meager set of measure zero.
Also, all unstable equilibria in X ⇥ B(0Y ) are hyperbolic
by Step 1, and there are countably many of these equilibria
due to the isolation of hyperbolic equilibria and the second
countability of X ⇥ B(0Y ) [16, Thm 2.50 and Prop. 3.11].
Thus, the set of points in X ⇥ B(0Y ) converging to an
unstable equilibrium is a countable union of meager sets of
measure zero and is thus meager (essentially by definition)
and measure zero [13, p. 128] in X ⇥ Y . H

STEP 5. Almost every trajectory of (6a)-(6b) converges to
the stable equilibrium (0X , 0Y ).

Proof. Since B(0Y ) is full measure and residual in Y by as-
sumption, X ⇥ B(0Y ) is full measure and residual in X ⇥ Y .
By Step 3, every initial condition in this set converges to a
hyperbolic equilibrium, and by Step 4, the subset converging
to an unstable equilibrium is meager and measure zero in
X⇥Y . Since the difference of a residual set of full measure
by a meager set of measure zero is residual and full measure,
the remainder constitutes a residual set of full measure in
X⇥Y for which all initial conditions converge to the unique
stable equilibrium (0X , 0Y ), completing the proof. ⌅

Remark 2. The main potential pitfall of the unforced outer
subsystem being only almost globally asymptotically stable
is the possibility of “funneling” a non-negligible (i.e. non-
meager or positive measure) set to a point (x, 0Y ), where x
is an unstable equilibrium of (7). However, such behavior is
precluded by the hyperbolicity of all unstable equilibria of
(7). This can be relaxed to the requirement that all unstable
equilibria of (7) are isolated and have at least one eigenvalue
with positive real part, similar to [10]. Then, the argument
proceeds similarly, but relies on the center-stable manifold
theorem instead of the stable manifold theorem. Similarly,
the hyperbolicity assumption on 0X can be relaxed at the cost
of local exponential stability. We present the more succinct
but less general result for clarity and brevity.

Corollary 1 (Upper Triangular System). Consider an upper
triangular system on X1 ⇥X2 ⇥ · · ·⇥Xn given by

ẋ1 = f1(x1, x2, . . . , xn), (17a)
ẋ2 = f2(x2, . . . , xn), (17b)

. . .
ẋn = fn(xn), (17c)

where for all i = 1, 2, . . . , n, the unforced system

ẋi = fi(xi, 0i+1, 0i+2, . . . , 0n) (18)

is almost globally asymptotically stable with respect to
0i 2 Xi and its chain recurrent set contains only hyperbolic
equilibria. Then, the upper triangular system (17a)-(17c) is
almost globally asymptotically stable and locally exponen-
tially stable with respect to (01, 02, . . . , 0n) as long as all
forward trajectories of (17a)-(17c) are bounded.

Proof. The claim follows by induction. In particular, the
claim is trivial for n = 1, and assuming it holds for
n = k � 1, the claim for n = k follows by Theorem 1 with
(17a) as the outer subsystem (6a) and (17b)-(17c) as the inner
subsystem (6b), i.e. x = x1 and y = (x2, x3, . . . , xn). ⌅

III. HYPOTHESES OF THE MAIN RESULTS

We now explore the hypotheses of Theorem 1 and Corol-
lary 1 in greater detail, showing how they can be verified.

A. Gradient-Like Systems
Systems with no chain recurrent points besides equilibria

are often called “gradient-like”, and the following fact shows
that such a property is often easily verified. We cannot
include the proof due to space, but very similar notions are
discussed in [10, Sec. IV], [17, Cor. 2.4], and [12, Sec. 7.12].

Fact 2. If E(�) consists of isolated points and there is a
proper1, continuous function V : M ! R that is decreasing2

along nonequilibrium trajectories, then R(�) = E(�).

Remark 3. From Fact 2, it is clear that Theorem 1 also holds
if the assumption that (7) is almost globally asymptotically
stable and gradient-like is replaced by the existence of a Lya-
punov function for (7) around 0X which is decreasing along
all nonequilibrium trajectories. Some authors [12], [17] call
this a strict Lyapunov function, but the control community
tends to reserve this term for Lyapunov functions with strictly
negative derivative along nonequilibrium trajectories [18].
Remark 4. Two important classes of systems to which Fact 2
applies are as follows. It can be shown that for a Riemannian
manifold (Q,), a strict Rayleigh dissipation ⌫, and a proper
Morse function V : Q ! [0,1) with a unique minimum at
0Q 2 Q, both the gradient dynamics on Q given by

q̇ = �grad V (q) (19)

and Euler-Lagrange dynamics on TQ given by3


rq̇ q̇ = �grad V (q)� ] � ⌫[(q̇) (20)

are almost globally asymptotically stable and locally expo-
nentially stable around 0Q 2 Q and 0TQ = (0Q, 0) 2 TQ
respectively, and moreover all chain recurrent points of

1A function V : M ! R is proper if it has compact sublevel sets, which
morally generalizes the notion of “radially unbounded” functions on Rn.

2A function f : R ! R is decreasing if f(t2) < f(t1) whenever
t1 < t2. Note that this does not imply ḟ(t) < 0 for all t, e.g. t 7! �t3.

3The maps [, ⌫[ : TQ ! T ⇤Q and ], ⌫] : T ⇤Q ! TQ are the mu-
sical isomorphisms with respect to the Riemannian metrics µ and ⌫ [19].

where (14) follows immediately from (11), (15) is obtained
by the continuity of pr1 and  , and (16) relies on the attrac-
tivity of 0Y for (6b). Thus for any y0 2 BY , by definition �y0

is asymptotically autonomous with limit semiflow ⇥. H

STEP 3. Every trajectory of  converges to a hyperbolic
equilibrium.

Proof. Every precompact forward trajectory of an asymptot-
ically autonomous semiflow converges to the chain recurrent
set of its limit semiflow [15]. Thus, Step 2 implies that for
each y0 2 BY , every trajectory of �y0 converges to R(⇥),
and asymptotic stability ensures that every trajectory of ⌥
converges to 0Y . Thus, in view of (12) it is clear that every
trajectory of  converges to R(⇥)⇥ {0Y }, and all points in
this set are hyperbolic equilibria by Step 1. Since hyperbolic
equilibria are isolated, continuity implies that every trajectory
converges to a particular hyperbolic equilibrium. H

STEP 4. Almost no trajectories of (6a)-(6b) converge to an
unstable equilibrium.

Proof. By the global stable manifold theorem, all points
converging to an unstable hyperbolic equilibrium lie in the
union of countably many embedded submanifolds of positive
codimension, which is thus a meager set of measure zero.
Moreover, all unstable equilibria in X ⇥ BY are hyperbolic
by Step 1, and there can be only countably many of these
equilibria due to the isolation of hyperbolic equilibria and the
second countability of the topology of X ⇥BY . Therefore,
the set of all points in X ⇥ BY converging to an unstable
equilibrium is a countable union of meager sets of measure
zero and is thus also meager and measure zero in X⇥Y . H

STEP 5. Almost every trajectory of (6a)-(6b) converges to
the stable equilibrium (0X , 0Y ).

Proof. Since BY is full measure and residual in N by
assumption, X ⇥ BY is full measure and residual in X⇥Y .
By Step 3, every initial condition in this set converges to a
hyperbolic equilibrium, and by Step 4, the subset converging
to an unstable equilibrium is meager and measure zero in
X⇥Y . Since the difference of a residual set of full measure
by a meager set of measure zero is residual and full measure,
the remainder constitutes a residual set of full measure in
X⇥Y for which all initial conditions converge to the unique
stable equilibrium (0X , 0Y ), completing the proof. ⌅

Remark 2. We emphasize that the main potential pitfall
of the unforced outer loop being only almost globally
asymptotically stable is the possibility that the transient
may “funnel” a non-negligible (i.e. non-meager or positive
measure) set to a point (x, 0Y ), where x is an unstable
equilibrium of (7). However, such behavior is precluded
by the hyperbolicity of all unstable equilibria of (7). This
assumption can be relaxed to the requirement that all unstable
equilibria of (7) are isolated and have at least one eigenvalue
with positive real part, similar to [14]. Then, the argument
proceeds similarly, but relies on the center-stable manifold
theorem instead of the stable manifold theorem. Similarly,

the hyperbolicity assumption on 0X can be relaxed at the cost
of local exponential stability. We present the more succinct
but less general result for clarity and brevity.

The main result also extends to upper triangular systems.

Corollary 1 (Upper Triangular System). Consider the upper
triangular system on X1 ⇥X2 ⇥ · · ·⇥Xn given by

ẋ1 = f1(x1, x2, . . . , xn), (17a)
ẋ2 = f2(x2, x3, . . . , xn), (17b)

...
ẋi = fi(xi, xi+1, . . . , xn), (17c)

...
ẋn = fn(xn). (17d)

Suppose that all forward trajectories of (17a)-(17d) are
precompact and that for all i = 1, 2, . . . , n, the system

ẋi = fi(xi, 0i+1, 0i+2, . . . , 0n) (18)

is almost globally asymptotically stable with respect to
0i 2 Xi and all chain recurrent points of (18) are hyperbolic
equilibria. Then, (01, 02, . . . , 0n) 2 X1 ⇥X2 ⇥ · · ·⇥Xn is
almost globally asymptotically stable and locally exponen-
tially stable for the upper triangular system (17a)-(17d).

Proof. The claim is trivial for n = 1. Assume for the
purposes of induction that the claim holds for n = k � 1.
Observe that the system given by (17b)-(17d) is an upper
triangular system with n = k � 1 subsystems satisfying all
hypotheses of the claim, and therefore by the induction
hypothesis it is almost globally asymptotically stable and
locally exponentially stable. It then follows immediately by
Theorem 1 that the upper triangular system (17a)-(17d) with
n = k subsystems is almost globally asymptotically stable,
where we take (17a) as the outer loop (6a) and (17b)-(17d)
as the inner loop (6b), i.e. x = x1 and y = (x2, x3, . . . , xn).
Thus by induction, the claim holds for all n 2 N. ⌅

B. Gradient-Like Systems
Our main result, Theorem 1, characterizes the stability

of a class of cascades in which the chain recurrent points
of the unforced outer loop are all equilibria, a somewhat
abstract property. Systems with with this property are often
called “gradient-like”. In Appendix A, we present Theorem
3, localizing the chain recurrent set of a dynamical system
to a subset of state space, provided there exists a function
with certain technical properties which is decreasing along
trajectories outside that subset. For convenience, we restate a
corollary of that result of particular relevance to our present
interests, and refer to the appendix for the full proof.

Corollary 3. If E(�) consists of isolated points and there is a
proper1, continuous function V : M ! R that is decreasing2

along nonequilibrium trajectories, then R(�) = E(�).
1A function V : M ! R is proper if it has compact sublevel sets, which

morally generalizes the notion of “radially unbounded” functions on Rn.
2A function f : R ! R is decreasing if f(t2) < f(t1) whenever

t1 < t2. Note that this does not imply ḟ(t) < 0 for all t, e.g. t 7! �t3.
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Generalization to Upper Triangular Systems

Proof: by induction!y

x



Fig. 2. A sampling of initial conditions and resulting trajectories of
the motivating example system (2a)-(2b), projected down to T2 from the
full state space TT2 = TS1 ⇥ TS1, where the “small” axis of the torus
corresponds to ✓ and the “large” axis corresponds to �. All sampled
trajectories converge to (0, 0, 0, 0) 2 TT2, marked in red. Despite the
highly energetic and topologically complex behavior of the trajectories, our
results certify the almost global asymptotic stability of the system, without
the need to construct an explicit Lyapunov function for the full cascade.

term” to certify global asymptotic stability of cascades with
globally asymptotically stable subsystems [4].

These global results have important applications, but their
utility in geometric control is rather limited, since only
manifolds diffeomorphic to Rn admit smooth globally stable
vector fields [11], which the state space of e.g. free-flying
robotic systems is not (see [12] for a discussion). In the
smooth non-Euclidean setting, the most one can hope for
in either the subsystems or the cascade is almost global
asymptotic stability. This fact has motivated an almost global
notion of input to state stability [13], in which an asymptotic
gain condition holds for all but a measure zero set of initial
conditions; a cascade is then guaranteed to be almost globally
asymptotically stable if its outer loop is almost globally
input to state stable and its inner loop is almost globally
asymptotically stable. While almost global input to state
stability can be challenging to verify, this can be achieved
under certain conditions on the exponential instability of
other equilibria as well as the “ultimate boundedness” of
trajectories of the system under arbitrary disturbances [14].

However, not all almost globally asymptotically stable
cascades have an outer loop enjoying this property; indeed,
almost global input to state stability seems to be an inherently
stricter property than necessary, since it characterizes the
response of the system to arbitrary disturbances, while for
our purposes, the outer loop is almost always subjected to
a converging disturbance. Yet, the lack of a comprehensive
understanding of such systems has required bespoke sta-
bility certificates for almost globally asymptotically stable
cascaded controllers in practice, inhibiting generalization; for
example, a Lyapunov function for the full system may be
handcrafted via human intuition even though the cascaded
structure originally inspired the control design [3].

B. Motivating Example

To motivate the question at hand, we present a simple
representative example system. Consider a cascade of the
form (1a)-(1b) evolving on the tangent bundle of T2, where
x = (✓, ✓̇) 2 TS1, y = (�, �̇) 2 TS1, and we make the no-
tationally convenient identification TS1 ⇠= S1 ⇥ R. The dy-
namics are given by

✓̈ = �(sin ✓ + ✓̇) cos 2�, (2a)

�̈ = �(sin�+ �̇), (2b)

and a sampling of system trajectories is shown in Fig. 2.
Using the LaSalle function V : (�, �̇) 7! 1� cos�+ 1

2 �̇
2,

it can be shown that that (�, �̇) = (0, 0) is almost globally
asymptotically stable for the inner loop (2b). By the same
reasoning, (✓, ✓̇) = (0, 0) is also almost globally asymptoti-
cally stable for the dynamics given by restricting the outer
loop (2a) to the stable equilibrium of the inner loop.

In fact, it turns out that the entire cascade (2a)-(2b) is
almost globally asymptotically stable, but the system does
not satisfy the hypotheses of any of the previously discussed
results. In particular, the subsystems are not globally asymp-
totically stable, nor is there a time scale separation between
the loops. Furthermore, viewing (�, �̇) as a disturbance to
(2a), it can be seen that the outer loop is not almost globally
input to state stable [13, Def. 2.1], since the response to the
bounded disturbance (�, �̇) = (⇡/2, 0) grows unbounded
from almost all initial conditions. Nonetheless, the results
of this paper will guarantee the almost global asymptotic
stability of a class of systems that includes (2a)-(2b).

In what follows, we certify the almost global asymptotic
stability of cascade systems in the form of ⌃ in Fig. 1, using
qualitative, dynamical properties of the other subsystems
shown. In Sec. II, we present the main result, which pertains
to cascades in which ⌃x is almost globally asymptoti-
cally stable with all chain recurrent points being hyperbolic
equilibria, and ⌃y is almost globally asymptotically stable
and locally exponentially stable, and almost all forward
trajectories of ⌃ are precompact. Using induction, we show
that our approach extends also to longer cascades and more
generally to upper triangular systems as well. We also discuss
two broad and important classes of systems enjoying the
stated chain recurrence criteria. In Sec. III, we show that the
precompactness criteria (analogous the forward boundedness
of trajectories for a system in Rn) can be verified using a
growth rate inequality on the interconnection term coupling
the subsystems. In Sec. IV, we return to the motivating
example, before discussing the results and concluding the
paper in Secs. V and VI.

II. ALMOST GLOBAL ASYMPTOTIC STABILITY

We first give a brief review of relevant concepts from
dynamical systems theory, adopting the definitions of [15],
whose perspective on the behavior of asymptotically au-
tonomous semiflows is a central ingredient of our approach.
Definition 1. A nonautonomous semiflow on a smooth Rie-
mannian manifold (M,) is a continuous map

� : {(t, s) : 0  s  t < 1}⇥M ! M (3)

such that �(s, s, x) = x and �
�
t, s,�(s, r, x)

�
= �(t, r, x)

for all t � s � r > 0. A semiflow is called autonomous when
additionally, �(t+ r, s+ r, x) = �(t, s, x) for all r > 0.

In the previous, the parameters s and t can be thought of
as respective “start” and “end” times. Hereafter, we will use
the shorthands �(t,s) : M ! M, x 7! �(t, s, x) for nonau-
tonomous semiflows and �t : M ! M, x 7! �(t, 0, x) for
autonomous semiflows.

Fig. 2. A sampling of initial conditions and resulting trajectories of
the motivating example system (2a)-(2b), projected down to T2 from the
full state space TT2 = TS1 ⇥ TS1, where the “small” axis of the torus
corresponds to ✓ and the “large” axis corresponds to �. All sampled
trajectories converge to (0, 0, 0, 0) 2 TT2, marked in red. Despite the
highly energetic and topologically complex behavior of the trajectories, our
results certify the almost global asymptotic stability of the system, without
the need to construct an explicit Lyapunov function for the full cascade.

term” to certify global asymptotic stability of cascades with
globally asymptotically stable subsystems [4].

These global results have important applications, but their
utility in geometric control is rather limited, since only
manifolds diffeomorphic to Rn admit smooth globally stable
vector fields [11], which the state space of e.g. free-flying
robotic systems is not (see [12] for a discussion). In the
smooth non-Euclidean setting, the most one can hope for
in either the subsystems or the cascade is almost global
asymptotic stability. This fact has motivated an almost global
notion of input to state stability [13], in which an asymptotic
gain condition holds for all but a measure zero set of initial
conditions; a cascade is then guaranteed to be almost globally
asymptotically stable if its outer loop is almost globally
input to state stable and its inner loop is almost globally
asymptotically stable. While almost global input to state
stability can be challenging to verify, this can be achieved
under certain conditions on the exponential instability of
other equilibria as well as the “ultimate boundedness” of
trajectories of the system under arbitrary disturbances [14].

However, not all almost globally asymptotically stable
cascades have an outer loop enjoying this property; indeed,
almost global input to state stability seems to be an inherently
stricter property than necessary, since it characterizes the
response of the system to arbitrary disturbances, while for
our purposes, the outer loop is almost always subjected to
a converging disturbance. Yet, the lack of a comprehensive
understanding of such systems has required bespoke sta-
bility certificates for almost globally asymptotically stable
cascaded controllers in practice, inhibiting generalization; for
example, a Lyapunov function for the full system may be
handcrafted via human intuition even though the cascaded
structure originally inspired the control design [3].

B. Motivating Example

To motivate the question at hand, we present a simple
representative example system. Consider a cascade of the
form (1a)-(1b) evolving on the tangent bundle of T2, where
x = (✓, ✓̇) 2 TS1, y = (�, �̇) 2 TS1, and we make the no-
tationally convenient identification TS1 ⇠= S1 ⇥ R. The dy-
namics are given by

✓̈ = �(sin ✓ + ✓̇) cos 2�, (2a)

�̈ = �(sin�+ �̇), (2b)

and a sampling of system trajectories is shown in Fig. 2.
Using the LaSalle function V : (�, �̇) 7! 1� cos�+ 1

2 �̇
2,

it can be shown that that (�, �̇) = (0, 0) is almost globally
asymptotically stable for the inner loop (2b). By the same
reasoning, (✓, ✓̇) = (0, 0) is also almost globally asymptoti-
cally stable for the dynamics given by restricting the outer
loop (2a) to the stable equilibrium of the inner loop.

In fact, it turns out that the entire cascade (2a)-(2b) is
almost globally asymptotically stable, but the system does
not satisfy the hypotheses of any of the previously discussed
results. In particular, the subsystems are not globally asymp-
totically stable, nor is there a time scale separation between
the loops. Furthermore, viewing (�, �̇) as a disturbance to
(2a), it can be seen that the outer loop is not almost globally
input to state stable [13, Def. 2.1], since the response to the
bounded disturbance (�, �̇) = (⇡/2, 0) grows unbounded
from almost all initial conditions. Nonetheless, the results
of this paper will guarantee the almost global asymptotic
stability of a class of systems that includes (2a)-(2b).

In what follows, we certify the almost global asymptotic
stability of cascade systems in the form of ⌃ in Fig. 1, using
qualitative, dynamical properties of the other subsystems
shown. In Sec. II, we present the main result, which pertains
to cascades in which ⌃x is almost globally asymptoti-
cally stable with all chain recurrent points being hyperbolic
equilibria, and ⌃y is almost globally asymptotically stable
and locally exponentially stable, and almost all forward
trajectories of ⌃ are precompact. Using induction, we show
that our approach extends also to longer cascades and more
generally to upper triangular systems as well. We also discuss
two broad and important classes of systems enjoying the
stated chain recurrence criteria. In Sec. III, we show that the
precompactness criteria (analogous the forward boundedness
of trajectories for a system in Rn) can be verified using a
growth rate inequality on the interconnection term coupling
the subsystems. In Sec. IV, we return to the motivating
example, before discussing the results and concluding the
paper in Secs. V and VI.
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such that �(s, s, x) = x and �
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for all t � s � r > 0. A semiflow is called autonomous when
additionally, �(t+ r, s+ r, x) = �(t, s, x) for all r > 0.

In the previous, the parameters s and t can be thought of
as respective “start” and “end” times. Hereafter, we will use
the shorthands �(t,s) : M ! M, x 7! �(t, s, x) for nonau-
tonomous semiflows and �t : M ! M, x 7! �(t, 0, x) for
autonomous semiflows.
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Theorem (Koditschek). A dissipative mechanical system with a strict Rayleigh
dissipation and a polar Morse potential is almost globally asymptotically stable
and locally exponentially stable.

In fact, the system is dissipative mechanical for the kinetic
energy and damping and potential ,
so it is gradient-like i.e. all chain recurrent points are equilibria (and hyperbolic).
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full state space TT2 = TS1 ⇥ TS1, where the “small” axis of the torus
corresponds to ✓ and the “large” axis corresponds to �. All sampled
trajectories converge to (0, 0, 0, 0) 2 TT2, marked in red. Despite the
highly energetic and topologically complex behavior of the trajectories, our
results certify the almost global asymptotic stability of the system, without
the need to construct an explicit Lyapunov function for the full cascade.
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cascaded controllers in practice, inhibiting generalization; for
example, a Lyapunov function for the full system may be
handcrafted via human intuition even though the cascaded
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reasoning, (✓, ✓̇) = (0, 0) is also almost globally asymptoti-
cally stable for the dynamics given by restricting the outer
loop (2a) to the stable equilibrium of the inner loop.

In fact, it turns out that the entire cascade (2a)-(2b) is
almost globally asymptotically stable, but the system does
not satisfy the hypotheses of any of the previously discussed
results. In particular, the subsystems are not globally asymp-
totically stable, nor is there a time scale separation between
the loops. Furthermore, viewing (�, �̇) as a disturbance to
(2a), it can be seen that the outer loop is not almost globally
input to state stable [13, Def. 2.1], since the response to the
bounded disturbance (�, �̇) = (⇡/2, 0) grows unbounded
from almost all initial conditions. Nonetheless, the results
of this paper will guarantee the almost global asymptotic
stability of a class of systems that includes (2a)-(2b).

In what follows, we certify the almost global asymptotic
stability of cascade systems in the form of ⌃ in Fig. 1, using
qualitative, dynamical properties of the other subsystems
shown. In Sec. II, we present the main result, which pertains
to cascades in which ⌃x is almost globally asymptoti-
cally stable with all chain recurrent points being hyperbolic
equilibria, and ⌃y is almost globally asymptotically stable
and locally exponentially stable, and almost all forward
trajectories of ⌃ are precompact. Using induction, we show
that our approach extends also to longer cascades and more
generally to upper triangular systems as well. We also discuss
two broad and important classes of systems enjoying the
stated chain recurrence criteria. In Sec. III, we show that the
precompactness criteria (analogous the forward boundedness
of trajectories for a system in Rn) can be verified using a
growth rate inequality on the interconnection term coupling
the subsystems. In Sec. IV, we return to the motivating
example, before discussing the results and concluding the
paper in Secs. V and VI.
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We first give a brief review of relevant concepts from
dynamical systems theory, adopting the definitions of [15],
whose perspective on the behavior of asymptotically au-
tonomous semiflows is a central ingredient of our approach.
Definition 1. A nonautonomous semiflow on a smooth Rie-
mannian manifold (M,) is a continuous map
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such that �(s, s, x) = x and �
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for all t � s � r > 0. A semiflow is called autonomous when
additionally, �(t+ r, s+ r, x) = �(t, s, x) for all r > 0.

In the previous, the parameters s and t can be thought of
as respective “start” and “end” times. Hereafter, we will use
the shorthands �(t,s) : M ! M, x 7! �(t, s, x) for nonau-
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Thus, by the comparison principle [22, p. 102, Lem. 3.4],
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Hence, by the properness of W and attractiveness of 0Y , the
forward trajectory through (x0, y0) is precompact. ⌅

IV. APPLICATION OF THE RESULTS

We now revisit the motivating example (2a)-(2b) evolving
on TT2 = TS1 ⇥ TS1, using our results to show that the full
cascade is in fact almost globally asymptotically stable. The
system can be given explicitly in the form (1a)-(1b) by

d

dt


✓
✓̇

�
=


✓̇

�(sin ✓ + ✓̇) cos 2�

�
, (34a)

d

dt


�
�̇

�
=


�̇

�(sin�+ �̇)

�
. (34b)

It is easily verified that (34b) takes the form of the Euler-
Lagrange dynamics (20) for the kinetic energy metric,
Rayleigh dissipation, and Morse potential function

 = ⌫ = d�⌦ d�, V : S1 ! R, � 7! 1� cos�. (35)

Thus by Remark 4, (34b) is almost globally asymptoti-
cally stable and locally exponentially stable with respect
to y = (�, �̇) = (0, 0), and moreover its chain recurrent set
consists solely of hyperbolic equilibria. Clearly, the same is
true for x = (✓, ✓̇) = (0, 0) with respect to (34a) restricted
to y = (0, 0). Hence by Theorem 1, it suffices to show pre-
compactness of forward trajectories, which we accomplish
using Theorem 2 and the total energy function (48) given by

W : (✓, ✓̇) 7! 1� cos ✓ + 1
2 ✓̇

2. (36)

The interconnection term is given by

h(x, y) =


0�

1� cos 2�
��

sin ✓ + ✓̇
�
�
, (37)

and the directional derivative of W along h is

Lh(x,y)W =
�
1� cos 2�

��
sin ✓ + ✓̇

�
✓̇. (38)

We propose the functions

↵ : (�, �̇) 7! 4 (1� cos 2�), � : (�, �̇) 7! 0, (39)

which are differentiable and vanish at (0, 0). We compute

↵(y)W (x) + �(y) = 4(1� cos 2�)(1� cos(✓) + ✓̇2

2 ) (40)

�
�
1� cos 2�

� �
2✓̇2

�
. (41)

Since sin ✓  1 and cos ✓ � �1, we have

2✓̇2 � ✓̇ sin ✓ + ✓̇2 whenever W (✓, ✓̇) � 4. (42)

Thus in view of (38) and (41)-(42), we have shown

Lh(x,y)W  ↵(y)W (x)+�(y) whenever W (x) � 4, (43)

and it follows by Theorem 2 that all forward trajectories of
(34a)-(34b) with y = (�, �̇) starting in the basin of attraction
of (34b) are precompact. Thus by Theorem 1, the system is
almost globally asymptotically stable and locally exponen-
tially stable with respect to (0, 0, 0, 0) 2 TT2.

V. DISCUSSION

The disturbance robustness of systems with some similar
properties was considered in [14], and the connection to
systems whose only chain recurrent points are equilibria
was explored in Sec. IV therein. However, those results
(when combined with [13]) can only certify the stability
of a cascade if the outer loop is almost globally input to
state stable. Indeed, [14, Prop. 1] certifies robustness to
small disturbances, while general robustness is achieved only
under the additional assumption of “ultimate boundedness”,
a strong property which is absent from systems such as our
motivating example. The condition that only equilibria are
chain recurrent may seem restrictive, but in the stabilization
of a desired state, such a property in the closed loop
dynamics is quite desirable; indeed, it would run contrary to
the goal of rapid convergence for states other than equilibria
to exhibit chain recurrence.

An interesting interpretation of our results is that for upper
triangular systems whose subsystems are almost globally
asymptotically stable and gradient-like with only hyperbolic
equilibria, the only obstacle to almost global asymptotic sta-
bility of the full system is the precompactness of forward tra-
jectories, a conclusion which can be compared with [4, Prop.
4.1] for globally asymptotically stable systems. Theorem 2
casts this condition as the requirement that the transient
from each initial condition injects only a finite amount of
“generalized energy” into the outer loop. Since the former
properties are enjoyed by cascades of mechanical systems
with suitable dissipation and potential, we see promising di-
rections for the constructive synthesis of cascaded geometric
controllers with almost global asymptotic stability for robotic
systems, e.g. those possessing a geometric flat output (such
as quadrotors and aerial manipulators) [23], which enjoy a
cascade-like structure where the evolution of the system in
the shape space is uniquely determined by the evolution in
the symmetry group. Indeed, for a reference trajectory with
constant acceleration, the error dynamics of the geometric
quadrotor controller proposed in [3] take the form (1a)-(1b),
with the subsystems being dissipative mechanical systems.

VI. CONCLUSION

In this work, we present sufficient conditions for the
almost global asymptotic stability of a cascade in which the
subsystems are only almost globally asymptotically stable, a
natural setting for geometric control design. The main result
relies on the assumption that the only chain recurrent points
of the unforced outer loop are hyperbolic equilibria. The
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dynamics is quite desirable; indeed, it would run contrary to
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to exhibit chain recurrence.
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jectories, a conclusion which can be compared with [4, Prop.
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Thus, our main result implies that boundedness of this system’s 
forward trajectories wil l  suffice for almost global asymptotic stabil ity!
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III. for
some continuous maps that
are vanishing and differentiable at .

α, β : Y → R

0Y

both systems are hyperbolic equilibria. An early, influential
analysis of the previous stability properties is [20], while a
detailed modern treatment can be found in [19, Chap. 6].
The chain recurrence claim is immediate by Fact 2 and the
fact that the “potential” V and the “total energy”

W : (q, q̇) 7! V (q) + 1
2(q̇, q̇), (21)

are respectively decreasing along all nonequilibrium trajec-
tories of (35) (cf. gradient descent) and (20) [19, Prop. 4.66].

B. Boundedness of Forward Trajectories
Forward boundedness is guaranteed when the outer sub-

system evolves on a compact manifold. To use Theorem 1 to
certify the stability of a cascade evolving on a noncompact
manifold (e.g. Rn or any tangent bundle), we require compo-
sitional criteria for forward boundedness. In this section, we
give growth rate criteria suitable for our geometric setting
on the “interconnection term” ⌃h and a Lyapunov function
for the unforced outer subsystem ⌃x. The result is analogous
to (and inspired by) [4, Thm. 4.7], which certifies forward
boundedness in Rn using the standard Euclidean norm. In a
Riemannian manifold (X,µ), we use instead the Riemannian
distance and the dual norms on each tangent and cotangent
space induced by the metric. We denote both norms by ||·||µ.

Theorem 2 (Forward Boundedness of a Cascade). Consider
a cascade on X ⇥ Y given by

ẋ = f(x, y), (22a)
ẏ = g(y). (22b)

Suppose the following conditions hold on the subsystems:
⌃y : For (22b), 0Y 2 Y is a stable hyperbolic equilibrium.
⌃x: W : X ! R�0 is a proper Lyapunov function for

ẋ = f(x, 0Y ) (23)

such that for some constants � � 0, d0 � 1,

||dWx||µ dist(0X , x)  �W (x) (24)

for all (x, y) 2 {x 2 M : dist(0X , x) � d0}⇥ B(0Y ).
⌃h: For some continuous maps ↵, � : B(0Y )!R�0 that

are vanishing and differentiable at 0Y , the intercon-
nection term h : (x, y) 7! f(x, y)� f(x, 0Y ) satisfies

||h(x, y)||µ  ↵(y) dist(0X , x) + �(y). (25)

Then, the trajectory of (22a)-(22b) through any initial condi-
tion (x0, y0) 2 X ⇥ B(0Y ) is bounded for all forward time.

Proof. Since W is a proper Lyapunov function for (23), the
forward trajectory through any initial condition of the form
(x0, 0Y ) is bounded, so it suffices to consider initial condi-
tions (x0, y0) with y0 6= 0Y . Fix (x0, y0) 2 X ⇥ B(0Y ) with
y0 6= 0Y and let

�
x(t), y(t)

�
denote its forward trajectory.

STEP 1. There exist positive constants A and ! such that
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�
+ �

�
y(t)

�
 Ae�!t for all t � 0.

Proof. Let d(t) := dist(0Y , y(t)) > 0. Since 0Y is hyper-
bolic, there exist C0,! > 0 such that, for all t � 0,

d(t)  C0e
�!t. (26)

Next, since ↵ and � are vanishing and differentiable at 0Y ,
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�
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The quotient in the previous limit is a continuous function
of t and thus is bounded for all t � 0 by some C1 > 0. With
(26), this yields the desired bound with A := C0C1. H
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is bounded for all t � 0.
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Thus, since W is proper and 0Y is attractive, it follows that�
x(t), y(t)

�
is bounded for all t � 0. ⌅

A similar approach can be iterated (as in Corollary 1) to
certify forward boundedness of an upper triangular system.

IV. APPLICATION OF THE RESULTS

We now revisit the motivating example (2a)-(2b). It is
easily verified that (2b) takes the form of the Euler-Lagrange
dynamics (20) for the kinetic energy metric and Rayleigh dis-
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Clearly, the same is true for x = (✓, ✓̇) = (0, 0) with respect
to the restriction of (2a) to y = (�, �̇) = (0, 0).
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I. is a stable hyperbolic equilibrium.0Y

II. for some
constant and a proper Lyapunov
function for .
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W : X → R≥0 Σx

Theorem (Welde, Kvalheim, and Kumar).
Suppose that the following conditions hold:

Then any trajectory with starting in the basin
of attraction of is bounded in forward time.
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I. INTRODUCTION

In this work, we are interested in the asymptotic stability
of cascade systems in the form

ẋ = f(x, y), (1a)
ẏ = g(y), (1b)

depicted graphically in in Fig. 1 as system ⌃. Throughout,
we assume that x and y evolve on X and Y , which are
smooth, connected Riemannian manifolds without boundary
(see Remark 1 for an explanation of the choice of setting).
We call (1b) the “inner loop” and (1a) the “outer loop”.

Cascades appear in many interesting and important physi-
cal systems. For example, many underactuated mechanical
systems can be rendered as a cascade after a feedback
transformation [1], and cascade structures appear often in
robotic systems, either intrinsically [2] or after control design
[3]. A long research tradition has studied the implications of
cascaded structure to simplify analysis and aid in control
[4]–[6]. This compositional approach is motivated by the
observation that control design for a subsystem is typically
easier, due to e.g. lower dimensionality, lower relative degree,
or full actuation. The primary difficulty that arises is to
ensure that the full system combining these subsystems
achieves the desired behavior, since only local (as opposed
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Ryẏ xẋ
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yẏ

f( · , ·)0Y
R

⌃x :
xẋ
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Fig. 1. We give sufficient conditions for the almost global asymptotic
stability of a cascade system ⌃ in terms of qualitative properties of the
closed loop systems ⌃y (the “inner loop”) and ⌃x (the unforced “outer
loop”) as well as growth rate conditions on the stateless I/O system ⌃h
(the “interconnection term”). Above, 0Y is the stable equilibrium of ⌃y .

to global) asymptotic stability is preserved under cascades
for general nonlinear systems [4].

A. Prior Work on Cascade Stability

Approaches to stability certification for nonlinear cascades
have exploited a wide range of structural features. Singular
perturbation techniques [7], [8] assume a time scale sepa-
ration between the “fast” inner loop and the “slow” outer
loop, and show that a system’s behavior tends toward that of
a “reduced” system as the ratio between convergence rates
tends to zero. However, this approach necessitates rapid inner
loop convergence (which can be especially challenging to
achieve for a control system with realistic input limitations).
Other approaches have relied on the robustness of the outer
loop to disturbances, leveraging the property of input to state
stability, which roughly requires the asymptotic response of
the system under a disturbance input to be bounded by the
size of the input (and therefore also implies global asymptotic
stability of the system in the absence of disturbances) [9]. A
classic result then establishes the global asymptotic stability
of a cascade for which the outer loop is input to state stable
and the inner loop is globally asymptotically stable [10].
Methods which avoid robustness and time scale assumptions
have relied on the local exponential stability of the inner
loop as well as growth restrictions on the “interconnection
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Fig. 2. A sampling of initial conditions and resulting trajectories of

the motivating example system (2a)-(2b), projected down to T2 from the

full state space TT2 = TS1 ⇥ TS1 , where the “small” axis of the torus

corresponds to ✓ and the “large” axis corresponds to �. All sampled

trajectories converge to (0, 0, 0,
0) 2 TT2 , marked in red. Despite the

highly energetic and topologically complex behavior of the trajectories, our

results certify the almost global asymptotic stability of the system, without

the need to construct an explicit Lyapunov function for the full cascade.

term” to certify global asymptotic stability of cascades with

globally asymptotically stable subsystems [4].

These global results have important applications, but their

utility in geometric control is rather limited, since only

manifolds diffeomorphic to Rn admit smooth globally stable

vector fields [11], which the state space of e.g. free-flying

robotic systems is not (see [12] for a discussion). In the

smooth non-Euclidean setting, the most one can hope for

in either the subsystems or the cascade is almost global

asymptotic stability. This fact has motivated an almost global

notion of input to state stability [13], in which an asymptotic

gain condition holds for all but a measure zero set of initial

conditions; a cascade is then guaranteed to be almost globally

asymptotically stable if its outer loop is almost globally

input to state stable and its inner loop is almost globally

asymptotically stable. While almost global input to state

stability can be challenging to verify, this can be achieved

under certain conditions on the exponential instability of

other equilibria as well as the “ultimate boundedness” of

trajectories of the system under arbitrary disturbances [14].

However, not all almost globally asymptotically stable

cascades have an outer loop enjoying this property; indeed,

almost global input to state stability seems to be an inherently

stricter property than necessary, since it characterizes the

response of the system to arbitrary disturbances, while for

our purposes, the outer loop is almost always subjected to

a converging disturbance. Yet, the lack of a comprehensive

understanding of such systems has required bespoke sta-

bility certificates for almost globally asymptotically stable

cascaded controllers in practice, inhibiting generalization; for

example, a Lyapunov function for the full system may be

handcrafted via human intuition even though the cascaded

structure originally inspired the control design [3].

B. Motivating Example

To motivate the question at hand, we present a simple

representative example system. Consider a cascade of the

form (1a)-(1b) evolving on the tangent bundle of T2 , where

x = (✓, ✓̇) 2 TS1 , y = (�, �̇) 2 TS1 , and we make the no-

tationally convenient identification TS1 ⇠= S1 ⇥ R. The dy-

namics are given by

✓̈ = �(sin ✓ +
✓̇) cos 2�

,
(2a)

�̈ = �(sin�+ �̇),

(2b)

and a sampling of system trajectories is shown in Fig. 2.

Using the LaSalle function V : (�, �̇) 7!
1� cos�+

1
2
�̇2 ,

it can be shown that that (�, �̇) =
(0, 0) is almost globally

asymptotically stable for the inner loop (2b). By the same

reasoning, (✓, ✓̇) =
(0, 0) is also almost globally asymptoti-

cally stable for the dynamics given by restricting the outer

loop (2a) to the stable equilibrium of the inner loop.

In fact, it turns out that the entire cascade (2a)-(2b) is

almost globally asymptotically stable, but the system does

not satisfy the hypotheses of any of the previously discussed

results. In particular, the subsystems are not globally asymp-

totically stable, nor is there a time scale separation between

the loops. Furthermore, viewing (�, �̇) as a disturbance to

(2a), it can be seen that the outer loop is not almost globally

input to state stable [13, Def. 2.1], since the response to the

bounded disturbance (�, �̇) = (⇡/2, 0)
grows unbounded

from almost all initial conditions. Nonetheless, the results

of this paper will guarantee the almost global asymptotic

stability of a class of systems that includes (2a)-(2b).

In what follows, we certify the almost global asymptotic

stability of cascade systems in the form of ⌃ in Fig. 1, using

qualitative, dynamical properties of the other subsystems

shown. In Sec. II, we present the main result, which pertains

to cascades in which ⌃x is almost globally asymptoti-

cally stable with all chain recurrent points being hyperbolic

equilibria, and ⌃y is almost globally asymptotically stable

and locally exponentially stable, and almost all forward

trajectories of ⌃ are precompact. Using induction, we show

that our approach extends also to longer cascades and more

generally to upper triangular systems as well. We also discuss

two broad and important classes of systems enjoying the

stated chain recurrence criteria. In Sec. III, we show that the

precompactness criteria (analogous the forward boundedness

of trajectories for a system in Rn ) can be verified using a

growth rate inequality on the interconnection term coupling

the subsystems. In Sec. IV, we return to the motivating

example, before discussing the results and concluding the

paper in Secs. V and VI.
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We first give a brief review of relevant concepts from

dynamical systems theory, adopting the definitions of [15],

whose perspective on the behavior of asymptotically au-

tonomous semiflows is a central ingredient of our approach.
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for all t � s � r > 0. A semiflow is called autonomous when

additionally, �(t+ r, s+ r, x) = �(t, s, x
) for all r > 0.

In the previous, the parameters s and t can be thought of

as respective “start” and “end” times. Hereafter, we will use

the shorthands �(t,s) : M ! M, x 7! �(t, s, x
) for nonau-

tonomous semiflows and �t : M ! M, x 7! �(t, 0, x
) for

autonomous semiflows.
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highly energetic and topologically complex behavior of the trajectories, our
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These global results have important applications, but their
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manifolds diffeomorphic to Rn admit smooth globally stable

vector fields [11], which the state space of e.g. free-flying

robotic systems is not (see [12] for a discussion). In the

smooth non-Euclidean setting, the most one can hope for

in either the subsystems or the cascade is almost global
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notion of input to state stability [13], in which an asymptotic

gain condition holds for all but a measure zero set of initial

conditions; a cascade is then guaranteed to be almost globally

asymptotically stable if its outer loop is almost globally

input to state stable and its inner loop is almost globally

asymptotically stable. While almost global input to state

stability can be challenging to verify, this can be achieved

under certain conditions on the exponential instability of

other equilibria as well as the “ultimate boundedness” of

trajectories of the system under arbitrary disturbances [14].

However, not all almost globally asymptotically stable

cascades have an outer loop enjoying this property; indeed,

almost global input to state stability seems to be an inherently

stricter property than necessary, since it characterizes the

response of the system to arbitrary disturbances, while for

our purposes, the outer loop is almost always subjected to

a converging disturbance. Yet, the lack of a comprehensive

understanding of such systems has required bespoke sta-

bility certificates for almost globally asymptotically stable

cascaded controllers in practice, inhibiting generalization; for

example, a Lyapunov function for the full system may be

handcrafted via human intuition even though the cascaded

structure originally inspired the control design [3].
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results. In particular, the subsystems are not globally asymp-

totically stable, nor is there a time scale separation between

the loops. Furthermore, viewing (�, �̇) as a disturbance to

(2a), it can be seen that the outer loop is not almost globally

input to state stable [13, Def. 2.1], since the response to the

bounded disturbance (�, �̇) = (⇡/2, 0) grows unbounded

from almost all initial conditions. Nonetheless, the results

of this paper will guarantee the almost global asymptotic

stability of a class of systems that includes (2a)-(2b).

In what follows, we certify the almost global asymptotic

stability of cascade systems in the form of ⌃ in Fig. 1, using

qualitative, dynamical properties of the other subsystems

shown. In Sec. II, we present the main result, which pertains
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equilibria, and ⌃y is almost globally asymptotically stable
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question: can we use these compositional stability 

certificates to synthesize tracking controllers

for a class of underactuated robotic systems?
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I. MOTIVATION

Robots must move through the world safely, capably, and
predictably if they are to be relied upon to perform life-critical
roles and deliver the real-world value that our discipline has
promised society. In order to deploy robotic systems prepared
to tackle a diverse array of practical problems, we require
systematic methods of verifiable controller synthesis for
a broad range of complex robot morphologies. Any such
solution must overcome several fundamental challenges:
1. Efficiency: Many systems, such as aerial and space robots

outfitted with lightweight or radiation-hardened processors,
must adhere to stringent computational budgets. Efficient
controllers also leave cycles available for high-level au-
tonomy and keep hardware costs low, improving societal
access and facilitating the deployment of large robot teams.

2. Compatibility: Robotic systems evolve on non-Euclidean
manifolds subject to highly nonlinear dynamics, underac-
tuation, and nonholonomic constraints. Control algorithms
must be intrinsically suited to these inherent characteristics
in order to realize the system’s full potential.

3. Scalability: As the complexity and dimensionality of
robotic systems grow to rival the richness of the natural
world, our approach to control synthesis must scale grace-
fully as well, relying neither on brute computational force
nor handcrafted case-by-case design by domain experts.

While nonlinear model predictive control [10, 28] and
reinforcement learning [25, 32] offer flexible languages for
posing control problems, so far they have been unable to
provide guarantees on safety, effectiveness, or transferability
across robot morphologies. Having comparatively poor com-
putational efficiency, such approaches also require powerful
onboard or offboard CPUs or GPUs [16, 17] or resort to crude
approximations, e.g. modeling a robot as a single body [12].

On the other hand, extensive research has sought to di-
rectly synthesize controllers with verifiable convergence and
performance, often requiring orders of magnitude less com-
putational power than their competitors [37]. However, many
such methods are of limited compatibility, assuming either
full actuation [7, 22, 14] or that the actuated velocities and
symmetry directions are complementary [30] or disjoint [11].
Other approaches seek to leverage structural properties such as
differential flatness [13, 31, 33, 23] or feedback linearizability
[20] to extend efficient planning and control to underactuated
systems. However, these approaches restrict operation to a
local coordinate patch of the configuration manifold, do not
respect the system’s geometric structure, and typically require
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Fig. 1. We propose a unified approach to verifiable controller synthesis
for a broad class of underactuated robots, exactly decomposing the system’s
dynamics into a cascaded form. For this aerial manipulator, we factor the state
space into the tangent bundles of T2 (describing the rotation of the revolute
joints) and SE(3) = SO(3) n R3 (describing the pose of the end effector).

trial and error to guess the requisite flat or linearizing output.
Other approaches exploiting cascaded structure in the dynam-
ics typically require either global asymptotic stability of the
subsystems [34] (impossible for smooth controllers on general
manifolds [24]) or very strong input-to-state properties [5].

Approaches meeting efficiency and compatibility criteria
have often sacrificed scalability, relying on experts to de-
sign a handcrafted controller based on human intuition. It
is common to consider either a single robot morphology
[19, 23, 36, 40, 38, 39] or a narrow class under restrictive
assumptions [44, 1]. Even when a system’s cascaded structure
inspires the control design, it may not be employed in the
certificate of stability [19], prohibiting generalization to other
systems with the same fundamental characteristics. Such a
manual approach cannot scale to complex multibody systems,
whose equations of motion are rarely computed symbolically.

To overcome these limitations, I propose a scalable ap-
proach to the synthesis of efficient, verifiable controllers
for underactuated robotic systems on manifolds, exploiting
the following key ingredients:
1. Geometry: By leveraging the strong geometric properties

of symmetry and Lagrangian dynamics enjoyed by me-
chanical systems, we can extend planning and control for
flat mechanical systems to a geometric setting, also taking
a constructive approach to flat output identification for a
diverse range of robot morphologies.

2. Compositionality: By understanding when a complex sys-
tem can be exactly decomposed into simpler components,
and what properties of the subsystems ensure the desired
behavior of the full system, we can facilitate tractable and
performant control design for dynamic robotic systems.

3. Algorithms: By developing algorithms which exploit the
structural properties of the dynamics even when closed-
form solutions are not available, our approach can scale to
handle even complex multibody systems.
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full actuation [7, 22, 14] or that the actuated velocities and
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differential flatness [13, 31, 33, 23] or feedback linearizability
[20] to extend efficient planning and control to underactuated
systems. However, these approaches restrict operation to a
local coordinate patch of the configuration manifold, do not
respect the system’s geometric structure, and typically require
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Other approaches exploiting cascaded structure in the dynam-
ics typically require either global asymptotic stability of the
subsystems [34] (impossible for smooth controllers on general
manifolds [24]) or very strong input-to-state properties [5].

Approaches meeting efficiency and compatibility criteria
have often sacrificed scalability, relying on experts to de-
sign a handcrafted controller based on human intuition. It
is common to consider either a single robot morphology
[19, 23, 36, 40, 38, 39] or a narrow class under restrictive
assumptions [44, 1]. Even when a system’s cascaded structure
inspires the control design, it may not be employed in the
certificate of stability [19], prohibiting generalization to other
systems with the same fundamental characteristics. Such a
manual approach cannot scale to complex multibody systems,
whose equations of motion are rarely computed symbolically.

To overcome these limitations, I propose a scalable ap-
proach to the synthesis of efficient, verifiable controllers
for underactuated robotic systems on manifolds, exploiting
the following key ingredients:
1. Geometry: By leveraging the strong geometric properties

of symmetry and Lagrangian dynamics enjoyed by me-
chanical systems, we can extend planning and control for
flat mechanical systems to a geometric setting, also taking
a constructive approach to flat output identification for a
diverse range of robot morphologies.

2. Compositionality: By understanding when a complex sys-
tem can be exactly decomposed into simpler components,
and what properties of the subsystems ensure the desired
behavior of the full system, we can facilitate tractable and
performant control design for dynamic robotic systems.

3. Algorithms: By developing algorithms which exploit the
structural properties of the dynamics even when closed-
form solutions are not available, our approach can scale to
handle even complex multibody systems.
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In Summary

1. We give compositional sufficient conditions for almost global asymptotic 
stability of cascade and upper triangular systems of arbitrary size.

2. Our results constitute an almost global extension of classic global results
a. Classic Result: GAS + GAS + Bounded => GAS
b. Our Result: aGAS + aGAS + Bounded + “Hyperbolic Gradient-Like” => aGAS
c. Note that for GAS systems, the only chain recurrent point is the stable equilibrium!

d. Boundedness criteria is the Riemannian analog of Euclidean “linear growth” criteria

3. Are there more general ways to show boundedness? Further work is needed.

4. We are pursuing applications in the control of underactuated robotic systems

5. Can we extend the approach to time-varying systems? 
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Fig. 2. A sampling of initial conditions and resulting trajectories of
the motivating example system (2a)-(2b), projected down to T2 from the
full state space TT2 = TS1 ⇥ TS1, where the “small” axis of the torus
corresponds to ✓ and the “large” axis corresponds to �. All sampled
trajectories converge to (0, 0, 0, 0) 2 TT2, marked in red. Despite the
highly energetic and topologically complex behavior of the trajectories, our
results certify the almost global asymptotic stability of the system, without
the need to construct an explicit Lyapunov function for the full cascade.

term” to certify global asymptotic stability of cascades with
globally asymptotically stable subsystems [4].

These global results have important applications, but their
utility in geometric control is rather limited, since only
manifolds diffeomorphic to Rn admit smooth globally stable
vector fields [11], which the state space of e.g. free-flying
robotic systems is not (see [12] for a discussion). In the
smooth non-Euclidean setting, the most one can hope for
in either the subsystems or the cascade is almost global
asymptotic stability. This fact has motivated an almost global
notion of input to state stability [13], in which an asymptotic
gain condition holds for all but a measure zero set of initial
conditions; a cascade is then guaranteed to be almost globally
asymptotically stable if its outer loop is almost globally
input to state stable and its inner loop is almost globally
asymptotically stable. While almost global input to state
stability can be challenging to verify, this can be achieved
under certain conditions on the exponential instability of
other equilibria as well as the “ultimate boundedness” of
trajectories of the system under arbitrary disturbances [14].

However, not all almost globally asymptotically stable
cascades have an outer loop enjoying this property; indeed,
almost global input to state stability seems to be an inherently
stricter property than necessary, since it characterizes the
response of the system to arbitrary disturbances, while for
our purposes, the outer loop is almost always subjected to
a converging disturbance. Yet, the lack of a comprehensive
understanding of such systems has required bespoke sta-
bility certificates for almost globally asymptotically stable
cascaded controllers in practice, inhibiting generalization; for
example, a Lyapunov function for the full system may be
handcrafted via human intuition even though the cascaded
structure originally inspired the control design [3].

B. Motivating Example

To motivate the question at hand, we present a simple
representative example system. Consider a cascade of the
form (1a)-(1b) evolving on the tangent bundle of T2, where
x = (✓, ✓̇) 2 TS1, y = (�, �̇) 2 TS1, and we make the no-
tationally convenient identification TS1 ⇠= S1 ⇥ R. The dy-
namics are given by

✓̈ = �(sin ✓ + ✓̇) cos 2�, (2a)

�̈ = �(sin�+ �̇), (2b)

and a sampling of system trajectories is shown in Fig. 2.
Using the LaSalle function V : (�, �̇) 7! 1� cos�+ 1

2 �̇
2,

it can be shown that that (�, �̇) = (0, 0) is almost globally
asymptotically stable for the inner loop (2b). By the same
reasoning, (✓, ✓̇) = (0, 0) is also almost globally asymptoti-
cally stable for the dynamics given by restricting the outer
loop (2a) to the stable equilibrium of the inner loop.

In fact, it turns out that the entire cascade (2a)-(2b) is
almost globally asymptotically stable, but the system does
not satisfy the hypotheses of any of the previously discussed
results. In particular, the subsystems are not globally asymp-
totically stable, nor is there a time scale separation between
the loops. Furthermore, viewing (�, �̇) as a disturbance to
(2a), it can be seen that the outer loop is not almost globally
input to state stable [13, Def. 2.1], since the response to the
bounded disturbance (�, �̇) = (⇡/2, 0) grows unbounded
from almost all initial conditions. Nonetheless, the results
of this paper will guarantee the almost global asymptotic
stability of a class of systems that includes (2a)-(2b).

In what follows, we certify the almost global asymptotic
stability of cascade systems in the form of ⌃ in Fig. 1, using
qualitative, dynamical properties of the other subsystems
shown. In Sec. II, we present the main result, which pertains
to cascades in which ⌃x is almost globally asymptoti-
cally stable with all chain recurrent points being hyperbolic
equilibria, and ⌃y is almost globally asymptotically stable
and locally exponentially stable, and almost all forward
trajectories of ⌃ are precompact. Using induction, we show
that our approach extends also to longer cascades and more
generally to upper triangular systems as well. We also discuss
two broad and important classes of systems enjoying the
stated chain recurrence criteria. In Sec. III, we show that the
precompactness criteria (analogous the forward boundedness
of trajectories for a system in Rn) can be verified using a
growth rate inequality on the interconnection term coupling
the subsystems. In Sec. IV, we return to the motivating
example, before discussing the results and concluding the
paper in Secs. V and VI.

II. ALMOST GLOBAL ASYMPTOTIC STABILITY

We first give a brief review of relevant concepts from
dynamical systems theory, adopting the definitions of [15],
whose perspective on the behavior of asymptotically au-
tonomous semiflows is a central ingredient of our approach.
Definition 1. A nonautonomous semiflow on a smooth Rie-
mannian manifold (M,) is a continuous map

� : {(t, s) : 0  s  t < 1}⇥M ! M (3)

such that �(s, s, x) = x and �
�
t, s,�(s, r, x)

�
= �(t, r, x)

for all t � s � r > 0. A semiflow is called autonomous when
additionally, �(t+ r, s+ r, x) = �(t, s, x) for all r > 0.

In the previous, the parameters s and t can be thought of
as respective “start” and “end” times. Hereafter, we will use
the shorthands �(t,s) : M ! M, x 7! �(t, s, x) for nonau-
tonomous semiflows and �t : M ! M, x 7! �(t, 0, x) for
autonomous semiflows.
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