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Abstract— The use of bidirectional propellers provides
quadrotors with greater maneuverability which is advanta-
geous in constrained environments. This paper addresses the
development of a trajectory planning algorithm for quadrotors
with bidirectional motors. Previous work has shown that the
property of differential flatness can be leveraged for efficient
trajectory planning. However, planners that leverage flatness for
quadrotors fail at points where the acceleration of the center
of mass is equal to gravity, i.e., when the vehicle experiences
free fall. The central contribution of this paper is a flatness-
based trajectory planning method that allows quadrotors to use
bidirectional propellers and pass through the so-called free-
fall singularity. We model our system as a differentially flat
hybrid system with the aid of coordinate charts derived from
the Hopf fibration and develop an algorithm that computes
forward and reverse thrusts for each propeller, resulting in
smooth trajectories everywhere in SE(3). We demonstrate
the planner’s versatility by planning knife-edge maneuvers
and trajectories passing through the free-fall singularity, while
transitioning from forward to reverse thrust.

I. INTRODUCTION

Recent hardware developments in symmetric fixed-pitched
aerial vehicle propellers and reversible electronic speed con-
trollers have led to the introduction of bidirectional thrusters,
giving aerial vehicles the ability to generate both positive and
negative thrust. The application of such thrusters can signifi-
cantly expand the potential flight envelope of a quadrotor,
enabling sustained inverted flight and greater agility. The
ability to transition between sustained upright and inverted
flight, referred to as flight orientations, also enables the use
of sensors or manipulators in the workspace above or below
the vehicle [1], [2], and safe landings on moving or inclined
surfaces [3], [4], increasing the vehicle’s versatility.

Existing quadrotor trajectory planning methods, such as
Mellinger’s minimum snap planner [5] [6] and Mueller’s
motion primitive planner [7] face one major limitation when
planning trajectories for bidirectional quadrotors: the avoid-
ance of zero thrust, or the condition where acceleration
is only due to gravity. This limitation arises due to the
differentially flat characteristic of quadrotors these planners
leverage, where the orientation of the quadrotor aligns the
thrust vector with the translational acceleration minus the
acceleration due to gravity. For a unidirectional quadrotor,

We gratefully acknowledge the support of ARL DCIST CRA W911NF-
17-2-0181, NSF Grants CCR-2112665, C-BRIC, a Semiconductor Research
Corporation Joint University Microelectronics program cosponsored by
DARPA and Qualcomm Research.

Katherine Mao, Jake Welde, M. Ani Hsieh, and Vijay Kumar are with
the Department of Mechanical Engineering and Applied Mechanics and
the GRASP Laboratory, University of Pennsylvania, PA, 19104, USA
{maokat, jwelde, mya, kumar}@seas.upenn.edu

passing through this zero thrust, i.e. free-fall state, would
require a discontinuity in the vehicle attitude. Yet, it is
apparent that for a bidirectional quadrotor to reverse motor
direction, the net thrust must reach zero at some intermediary
time.

Recent works addressing bidirectional quadrotors have
focused on control methods that can account for the high
forces and moments experienced by the quadrotor during
aggressive maneuvers such as flips [8], [9], and accommodate
the range of expected orientations the quadrotor will traverse
[10]. Trajectory planning for the greater flight envelope
of a bidirectional quadrotor has been limited to simple,
often planar, trajectories designed to demonstrate a flipping
maneuver, which start and end at hover [11], [12], [1]. In
addition, these existing planners often fail or disregard key
requirements that ensure smoothness, generating dynamically
infeasible trajectories which are only approximately tracked
by a closed loop controller [11], [1].

In our work, we eliminate the artificial zero thrust avoid-
ance constraint and show how to plan motions that go di-
rectly through this free-fall singularity. The main contribution
of this paper is a novel trajectory planning algorithm for
bidirectional quadrotors that guarantees smooth, dynamically
feasible trajectories throughout the full flight envelope of the
vehicle. Our approach builds upon [5], utilizing a minimum
snap cost function to plan piece-wise polynomial trajectories
with continuity constraints. Our method ensures an efficient
and smooth state trajectory while satisfying constraints. We
accomplish this by modeling the bidirectional quadrotor as
a differentially flat hybrid system, where distinct modes
correspond to the local yaw parameterizations determined
with the Hopf fibration [13] and the sign of the net thrust,
ensuring smooth transitions between coordinate charts. We
demonstrate how the proposed planning strategy is used to
maneuver a bidirectional quadrotor through environments
with dense obstacles without constraining the quadrotor’s
orientation and acceleration a priori.

This paper is organized as follows: we begin with a sum-
mary of our notation in Section II and describe our system
model in Section III. Section IV describes the development
of the hybrid flatness diffeomorphisms, and the development
of the trajectory planning algorithm is covered in Section V.
Finally, Sections VI,VII present the experimental results and
some concluding remarks.

II. ON SYMBOL CONVENTION

We represent scalar variables and quaternions in unmod-
ified typeface (x, a, q) and vectors with a bolded typeface



(r, v,ω). For quaternions, we follow the Hamilton Conven-
tion [14] of ijk = −1, where q = q0 + iq1 + jq2 + kq3.
Superscripts are specified to denote the frame in which a
vector’s components are expressed (bW ). Table I gives the
definitions of symbols used throughout the paper.

TABLE I
DEFINITIONS OF VARIABLES

W,A,B World frame, intermediate body frame,
and body frame of quadrotor

I3 ∈ R3 3×3 Identity Matrix

g ∈ R Magnitude of the acceleration due to
gravity

b1,b2,b3 ∈ R3 Body Frame Vectors of
Quadrotor in W

b3 = [a, b, c]T ∈ R3 Unit components of b3 in W
[ȧ, ḃ, ċ] ∈ R3 Time Derivative of [a, b, c] in W

r, ṙ, r̈,
...
r ∈ R3 Position, Velocity, Acceleration, Jerk

vectors of quadrotor in W
ψ ∈ S1 Yaw of quadrotor B in A
f ∈ R Net thrust of quadrotor
m1,m2,m3 ∈ R Body moments of quadrotor
ω ∈ R3 Angular Velocity of Quad in W
I ∈ R3×3 Inertia Matrix of the Quad in B

III. SYSTEM MODELING

We begin by defining the quadrotor body frame B =
{b1,b2,b3} that resides in a world frame world frame
W = {e1, e2, e3} such that e3 is antiparallel to gravity, as
shown in Fig. 1. We also define an intermediary body frame
A = {a1, a2, a3}, introduced in Sec IV-B. The dynamical
model of the quadrotor is given by:

mr̈ = −mge3 + fbW
3 (1)

ω̇B = I−1

−ωB × IωB +

m1

m2

m3

 (2)

where the quadrotor applies thrust along the b3 direction.
We define b1 and b2 along the perpendicular arms of the
quadrotor. From [5], we can determine a relation between
f,mi and the motor speeds of the quadrotor, given knowl-
edge of the characteristic length of the quadrotor L, thrust
coefficient kf , and drag coefficient km:

m1

m2

m3

f

 =


0 kfL 0 kfL

−kfL 0 −kfL 0
km −km km −km
kf kf kf kf
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where sgn(si) denotes the direction of spin of motor i, given
by

sgn(si) =

{
1, normal spin
−1, reverse spin

. (4)

IV. DIFFERENTIAL FLATNESS

A differentially flat system is defined as one where the
system’s state and inputs can be smoothly parameterized in
terms of a set of so-called flat outputs and their derivatives.
Per [15], [16], a differentially flat hybrid system is one where
multiple sets of differentially flat mappings exist, and the

Fig. 1. The quadrotor, with its body frame denoted by B, with some
orientation ψ and displacement r with respect to the world frame W .

transition functions between each pair of mappings, as well
as the conditions triggering a transition, can also be written
as a function of the flat outputs. We use ‘guard’ to refer to the
transition condition between two mappings and ‘reset’ for the
transition function between a pair of mappings corresponding
to a guard. For the quadrotor, we determine a diffeomorphism
between the following variables:

Flat Outputs: r, ψ

States and Inputs: r, q, ṙ,ω, s21, s
2
2, s

2
3, s

2
4.

Both early [6] and more recent [5] work on differential
flatness in quadrotors has been limited to a single flatness
diffeomorphism on a local region of the state space. For the
first time, we describe the quadrotor as a differentially flat
hybrid system, enabling operation over the full performance
envelope. In the remainder of this section, we describe the
necessary extensions to the standard model.

A. Positive and Negative Thrust

In the traditional flat output derivation for quadrotors [5],
it is assumed that the thrust vector and b3 are parallel.
For bidirectional quadrotors, this approach introduces an
ambiguity to the direction of b3, as thrust can be generated
antiparallel to b3. We resolve this ambiguity by introducing
an additional sign parameter to the original formulation.

We can rewrite (1) to find the desired thrust vector F for
some desired positional acceleration.

F = mr̈+mge3 (5)

We use η to account for the quadrotor’s ability to reverse
spin and generate inverted thrust. We use ↿↾ to denote parallel
vectors and ↿⇂ for antiparallel vectors. With these two values,
we can fully determine b3 as

b3 = [a, b, c]T = η
F

||F||
(6)

where η is given by

η =

{
1, if b3 ↿↾ F

−1, if b3 ↿⇂ F
. (7)



For the remainder of this paper, we will refer to the b3 ↿↾ F
and b3 ↿⇂ F as the (+) and (−) ‘postures’ respectively.

B. Yaw Parametrization

A well-known singularity exists in the approach taken by
[5] for constructing the quadrotor attitude when e3 · b3 = 0,
effectively limiting pitch and roll to 90◦ from hover i.e.
c ≥ 0. Instead, we follow the approach of [13] for two
overlapping almost-global representations of quadrotor’s ori-
entation in SO(3) [17]. By exploiting the Hopf fibration, an
almost-global invertible mapping from S3 to S2 × S1 (we
refer to [18] for a more complete explanation), two sets of
quaternions can be constructed in view of (6) and a desired
yaw ψ, with respective singularity points at c = −1 and
c = 1. We achieve global coverage on SO(3) by switching
as needed between these two mappings, which we refer to
as the North (N) and South (S) charts, given by

qN : S2 \ {−e3} × S1 → S3

(b3, ψ) 7→ qabc,N (b3)⊗ qψ(ψ)
(8)

qS : S2 \ {e3} × S1 → S3

(b3, ψ) 7→ qabc,S(b3)⊗ qψ(ψ)
(9)

These charts are in turn determined using the maps

qabc,N : (a, b, c) 7→ 1√
2(1+c)


1 + c
a
−b
0

 (10)

qabc,S : (a, b, c) 7→ 1√
2(1−c)


−b
1− c
0
a

 (11)

which give the quaternion representing the orientation of the
intermediate frame A in terms of the b3 axis. Finally, both
the (N) and (S) charts employ the same map describing
the difference in orientation between the A and B frames in
terms of the yaw angle, i.e.

qψ : ψ 7→


cos(ψ/2)

0
0

sin(ψ/2)

 (12)

The use of more than one yaw parametrization in the flat
outputs is unavoidable due to topological obstructions [19].

C. Hybrid Modes

As the +/− postures and N/S charts are independent
of one another, there are a total of four modes (Fig. 2),
each corresponding to a differentially flat system. Together,
these modes, {+N,−N,+S,−S}, describe the bidirectional
quadrotor’s dynamics.

D. Guards and Resets

Next, we examine the switching dynamics between these
four modes. The transition between (+) and (−) (and vice
versa) naturally occurs when ||F|| = 0. Thus, we express
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Fig. 2. A bidirectional quadrotor can be modeled as a differentially flat
hybrid system where the four distinct modes {+N, −N, +S, −S } arise
due to the possibility of forward or reverse thrust and the need for two yaw
parametrizations.

the guard, using (5), as r̈ = −ge3. The corresponding reset
is an identity map, as the values of the flat outputs of the
quadrotor do not change. It is clear from (6) that r̈, F, and b3

are coupled, and without meeting the guard, any transition
between (+) and (−) would result in a discontinuity in the
quadrotor’s attitude.

Looking at Fig. 2, we see that (8) and (9) overlap every-
where but c = ±1. Selecting a critical angle beyond which
mode transition should occur, we express the guard for the
mode switch from (N) → (S) as

e3 ·
r̈ + ge3

||r̈ + ge3||
= −η α, (13)

and the guard for the mode switch from (S) → (N)

e3 ·
r̈ + ge3

||r̈ + ge3||
= η α. (14)

Note that because these guard surfaces are not located at the
same angle, but instead includes overlap between the charts
over a large region. This provides a degree of hysteresis to
ensure only a finite number of switches between (N ) and
(S) occur in finite time.

We determine the reset mapping from the quaternion
formulation demonstrated in [13]. Application of qabc,N and
qabc,S rotate W to differing intermediary A = {a1,a2,a3}
frames, aligned along a3. Differing yaw angles (ψN , ψS) are
applied to qψ(ψ) from (8, 9) in (N) and (S) to reach B. We
find the angle between these two definitions of a1,a2 at any
given a3 by equating the two quaternions,

qabc,N ⊗ qψ(ψN ) = qabc,S ⊗ qψ(ψS). (15)



and simplifying to obtain a relationship between ψN and ψS ,
namely

ψS = 2arctan 2(a, b) + ψN (16)

to determine the yaw reset map, while the reset for all other
flat outputs is an identity map.

V. TRAJECTORY PLANNING

We construct system trajectories as a set of piece-wise
polynomials, each confined to a single mode of the differ-
entially flat hybrid system. We plan such trajectories in two
steps. First, we solve for the translational trajectory according
to preassigned +/− postures. Next, as (13), (14) depend
only on the translational acceleration, we can assign N/S
charts that are consistent with the already planned r̈ and
the assigned +/− posture, fully determining the mode of
each segment of the trajectory. We then insert the necessary
transition constraints from the reset maps to solve for the
yaw trajectory in a second pass.

To plan the translational portion, we follow the work of
[5], using a minimum-snap planner to generate a piece-wise
polynomial trajectory (σ(t) ∈ R3) given k waypoints, where
the +/− posture of each segment (σj , j = [1, 2, . . . , k]) is
assigned a priori.1 Each σj(t) is given by

σj(t) =

7∑
i=0

cjit
i (17)

We then formulate the planning problem as the optimization
problem

min
c

∫ tk

t0

∣∣∣∣∣∣∣∣ d4dt4σ(t)
∣∣∣∣∣∣∣∣2 dt. (18)

subject to:

Waypoint Constraints: Aeqc = beq (19)

Collision Constraints: Aineqc ≤ bineq (20)

Continuity Constraints:


σ̇j−1(tj−1) = σ̇j(0)

σ̈j−1(tj−1) = σ̈j(0)
...
σ j−1(tj−1) =

...
σ j(0)

(21)

Boundary Constraints:

{
σ̇1 = σ̈1 =

...
σ 1 = 0

σ̇k = σ̈k =
...
σ k = 0

(22)

Reset Constraints: σ̈r(tr) = −ge3, r ∈ R (23)

where R is the set of waypoints at which mode switches
occur and c the 1-dimensional array of polynomial coeffi-
cients (cji). This minimization can be cast as a Quadratic
Program with the trajectory coefficients as decision variables.
The costs and constraints take the form

min
x

cTHc + fc

s.t. Aeqc = beq,

Aineqc ≤ bineq

(24)

1Note that a search overall possible mode sequences can be formulated as
a mixed integer quadratic program [15], if we wish to explore all possible
trajectories. Because a small number of mode switches are usually sufficient
to perform a given flight task, such optimization problems are tractable.

where H is a positive definite matrix such that cTHc + fc
is the re-formatted cost function. We operate under the
assumption that mode switches occur only at waypoints. We
determine the interval of time between waypoints through
a simple heuristic which divides the Euclidean distance
between waypoints by a nominal speed v. We can repeat
an analogous process to plan the yaw trajectory.

We remark that unlike previous motion planners for bidi-
rectional quadrotors, we do not explicitly specify a flipping
maneuver transitioning from upright to inverted flight, nor
where a flip should occur if one does. As we demonstrate
in our experiments, our planner generates trajectories that
may include flight orientation transitions, net thrust transi-
tions without inversion, or both, according to the costs and
constraints imposed by the environment.

r̈ = −ge3
(+) : b3 ↿↾ F (−) : b3 ↿⇂ F

(+) (+) (−)

(−)start

end

Fig. 3. A sample translation trajectory generated by the minimum snap
planner, with the first two segments in (+) and the next two segments in
(−). The freefall acceleration constraint of r̈ = −ge3 is added at the second
waypoint to ensure a smooth transition between (+) and (−).

VI. SIMULATION RESULTS

For simulation experiments, a quadrotor model is con-
structed through the equations of motion given in (1) and (2).
The scipy.integrate2 package is used for numerical
integration to model the quadrotor responses at a rate of
500Hz. We use quadrotor parameters from the Crazyflie
2.0 from bitcraze3. No motor dynamics were incorporated.
For each trajectory, we specify positional and continuity
constraints at each waypoint, plus start and stop hover con-
ditions. In our approach, the planning problem is ultimately
cast as a quadratic program of similar size and sparsity
to existing methods which achieve real time planning on
resource-constrained platforms [20].

A. Experiment 1: Mode Transitions

We first present a series of trajectories where a bidi-
rectional quadrotor passes through a sequence of modes,
transitioning to sustained inverted flight where necessitated
by the constraints. In each trajectory, a sequence of four
modes is specified to traverse a planar five waypoint (k = 5)
path. The quadrotor travels a total of 10m along the y-axis
and 5m along the z-axis, with v = 2m/s. Different mode
sequences are specified to demonstrate the adaptability of the
planner.

In the the first trajectory, Fig. 4a, the mode switch from
(+) to (−) occurs at the middle waypoint. We see in Fig.
4c that b3 is horizontal at the point of the the mode switch

2docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve ivp
3www.bitcraze.io/products/old-products/crazyflie-2-0/



Fig. 4. Top left: A trajectory (black) with five waypoints (purple) and one
mode switch. The start and goal waypoints are marked by the green and
red makers respectively. Top right: The trajectory ÿ vs z̈, passing through
the free-fall singularity (ẍ, ÿ = 0, z̈ = −g) (blue) at the point of mode
transition (ẍ, ÿ = 0, z̈ = −g). Bottom: The components of b3 over the
duration of the trajectory. (+) and (−) are marked by white and red zones
respectively.

Fig. 5. Top left: A trajectory with five waypoints and two mode switches
Top right: The trajectory ÿ vs z̈. Bottom: The components of b3 over the
duration of the trajectory.

during its transition in flight orientation. This observation
is reinforced in Fig. 4a,b. From (5) and (6), we know the
direction of the quadrotor’s thrust vector and acceleration
vector are aligned. As this is a yz planar path, a vector drawn
from the blue circle indicating the F = 0 singularity to any
point on the red path is aligned with the quadrotor’s net
thrust at that point in time. As the quadrotor’s acceleration
approaches the singularity point, we observe the orientation
vector approaches the horizontal.

In the second trajectory, Fig. 5a, mode switches are
specified at the second and fourth waypoints. Again, we
see that the transition in flight orientation occurs around the
mode switch (Fig. 5c). Fig. 5b shows that b3 is vertical at the
point of the mode switch. The full transition occurs shortly
before the first mode switch and shortly after the second.

B. Experiment 2: Agile Flight

Next, we demonstrate the use of our planner to plan
a trajectory where a quadrotor switches from positive to

Fig. 6. Top Right: A trajectory with two mode switches without flight
orientation changes. Top Left: The trajectory ÿ vs z̈. c) The components of
b3 over the duration of the trajectory.

negative thrust without transitioning flight orientations. In
this trajectory, Fig. 6a, we traverse (k = 5) waypoints set
approximately along a sine curve, avoiding the 2m × 9m
obstacle in green. We use v = 4.5m/s.

From Fig. 6b and Fig. 6c, we can see that through the
course of the mode switch from (+) to (−) and back, b3

remains close to vertical, showing that while that quadrotor
switches thrust directions, the quadrotor never transitions
to sustained inverted flight. Near the beginning and end of
the trajectory, the quadrotor does temporarily transition to
inverted flight before returning upright.

C. Experiment 3: Narrow Window

In the classic narrow window problem, a quadrotor must
perform a knife-edge maneuver, rotating itself to 90◦ to pass
through an obstacle without collision. With unidirectional
quadrotors, once the knife-edge has been achieved, the
quadrotor must then fight momentum to roll itself back to
an upright position. Here, we present a formulation of the
narrow window path where a bidirectional quadrotor follows
its momentum after the knife-edge to roll itself into an
inverted hover.

With existing methods such as [21], an acceleration con-
straint is used to to specify a quadrotor’s desired orientation
(bW3 ).

r̈ = ||r̈ + ge3||bW3 + ge3 (25)

where bW3 is non-zero. It becomes easy to see a conflict
of constraints when the location of an orientation constraint
coincides with the guard between (+) and (−).

Instead, we examine the leading and exiting trajectories
to this point. We assume there exists some θ angle tolerance
from the horizontal where the quadrotor can traverse the
obstacle collision-free (Fig. 7).

For clarity, we choose to align our coordinate system with
the narrow window, such that the plane of the aperture is
normal to the y-axis with the narrow dimension running
along the x-axis. To ensure the vehicle passes through the
aperture, we require that at the time the quadrotor traverses



Fig. 7. A quadrotor with its b3 vector angled θ from the horizontal,
traversing through a narrow window. The blue dot marks the free-fall
singularity (ẍ, ÿ = 0, z̈ −−g. x̄ and z̄ represent values of ẍ, z̈ referenced
from the singularity. The yellow regions correspond to the acceleration
constraint (27).

the window, its velocity is orthogonal to the narrow direction
of the window, i.e.

ẋ = 0 (26)

Additionally, by exploiting the connection between quadrotor
acceleration and orientation, we can write a series of inequal-
ity constraints in the form of (20), ensuring that during a
short interval of time leading to and exiting from the narrow
window, the quadrotor maintains an angle from the horizontal
of less than θ, i.e.

ẍ ≥
∣∣∣∣ z̈ + ge3
tan(θ)

∣∣∣∣ (27)

This method allows us to simultaneously constrain the ori-
entation of a quadrotor’s transition from upright to inverted
flight while ensuring a mode switch in the same maneu-
ver without conflicting constraints. In addition, unlike the
method used in [21], this method does not require imposing
an arbitrary magnitude for the quadrotor’s acceleration.

With these added constraints, we demonstrate a knife-
edge maneuver in a non-planar trajectory (Fig. 8a), with
v = 4m/s. The quadrotor passes through a window of
width 0.2m, given θ = 10◦. Where the quadrotor previously
flipped about the axis perpendicular to its trajectory, here
we demonstrate a trajectory where the quadrotor flips about
its axis of travel (Fig. 8b), successfully traversing through a
narrow window obstacle. The green and red triangles in Fig.
8c mark the entrance and exit to the region of acceleration
inequality constraints outlined in (27).

D. Discussion of Simulation Results

With these simulation experiments, we have demonstrated
smooth, dynamically feasible trajectories where the transition
from sustained upright to inverted flight (and vice versa)
emerges from the imposed constraints and cost function,
rather than being manually programmed. This is particularly
clear in view of the bottom plots in Figs. 4, 5, 6, and 8,
since the quadrotor’s orientation changes dramatically before,
at, after, or independently of a change in the sign of the
thrust, instead of being commanded to instantaneously flip

Fig. 8. Top: A trajectory with one mode switch passing through a narrow
window. Middle Left: The trajectory ẍ vs z̈. The yellow zones highlight the
constraints imposed by Eq.27 Middle Right: The trajectory ÿ vs z̈. Bottom
The components of b3 over the duration of the trajectory.

at some predetermined point in time or simultaneously to a
hybrid mode switch. A time-optimization algorithm such as
[5] could be utilized to further refine the trajectory.

VII. CONCLUSION

The main contribution of this paper is a dynamically
feasible trajectory planner for bidirectional quadrotors that
utilizes the so-called free-fall singularity to smoothly tran-
sition the net thrust. The method relies on the property of
hybrid differential flatness with four distinct modes corre-
sponding to forward and reverse thrust and the choice of
yaw parameterizations given by the Hopf fibration. We show
how this method can be used to automatically synthesize
trajectories that can transition the net thrust both with and
without changing flight orientations by moving through the
free-fall singularity. Further, we show how the specification
of appropriate constraints can lead to aggressive trajectories
through narrow window-like apertures. Our current work
addresses the implementation of aggressive trajectories on
platforms with bidirectional propellers. Because our planning
strategies make full use of the portion of the flight envelope
surrounding the free-fall singularity, we anticipate that the
use of sensored speed controllers which eliminate the thrust
deadband [8] around zero speed [22] will be an important
requirement to achieve high performance flight.
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