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I. MOTIVATION AND OBJECTIVES

Robots must move through the world safely, capably, and
predictably if we are to rely upon them to perform life-critical
roles and to deliver the practical impact that our discipline has
promised society. However, the synthesis of reliable, high-
performance, transferable controllers for underactuated
robotic systems remains challenging, due to the complexity
and nonlinearity of the dynamics, the geometry and topology
of the state space, and the diversity of robot morphologies
suited for varied real-world tasks. In view of these challenges,
a broadly successful solution to this problem must be:
1. Systematic: As the complexity and dimensionality of

robotic systems grow to rival the richness of Nature, our
approach to control synthesis must scale gracefully as well,
renouncing handcrafted guess-and-check approaches in fa-
vor of certifiable, generalized, and trustworthy solutions.

2. Computationally Efficient: Agile systems like aerial and
space robots are outfitted with lightweight or radiation-
hardened processors. Thus, controllers must adhere to strin-
gent computational budgets to achieve real-time operation
while leaving cycles available for other autonomy tasks.

3. Geometrically Compatible: Robotic systems evolve on
non-Euclidean manifolds subject to nonlinear, underactu-
ated dynamics. Control algorithms must be intrinsically
suited to these inherent characteristics in order to exploit
the system’s full hypothetical performance envelope.

While nonlinear model predictive control [4, 21] and rein-
forcement learning [18, 25] offer flexible languages for posing
control problems, their poor computational efficiency often
demands powerful onboard or offboard CPUs or GPUs [11,
29] or coarse approximations, e.g., modeling a quadruped as a
single rigid body [5] or assuming direct velocity control [12].
They have also struggled to provide systematic guarantees on
reliability, safety, or transferability across morphologies.

Conversely, extensive research has sought to directly pro-
pose control policies with provable convergence, which tend
to be orders of magnitude more computationally efficient
than their alternatives [31]. However, such methods are often
incompatible with the system’s intrinsic geometry. Many
approaches leveraging differential flatness [7, 24, 26, 17],
feedback linearization [15], or constructive algorithms for
nonlinear control [27] disregard the system’s global geometric
structure and restrict operation to a local coordinate patch of
the configuration manifold. Even methods that may respect
the system’s geometry are not systematic, since they require
trial and error to manually guess the requisite “flat output”. It
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Fig. 1: We propose a systematic approach to verifiable controller synthesis for
a broad class of underactuated robots, by identifying and exploiting hierarchy
and constructing certificates compositionally. For this aerial manipulator, we
factor the dynamics almost globally between the tangent bundles of R3 × T3

(i.e., the center of mass, joint angles, and yaw) and S2 (i.e., the vehicle tilt).

is thus common to consider either a single robot morphology
[14, 17, 30, 32, 33, 34] or a narrow class under restrictive
assumptions [36, 42]. Even when a cascade structure inspires
the control design, it may not be fully exploited in the
certificate of stability [14], prohibiting generalization to other
systems with the same essential features. Such a manual
approach cannot scale to complex multibody robots, whose
equations of motion are rarely computed symbolically [6].

To overcome these limitations, I propose a systematic and
intrinsic approach to the synthesis of efficient, verifiable
controllers for underactuated robotic systems, exploiting:
1. Persistent Structure: We study abstract system-level prop-

erties (e.g., symmetry, differential flatness, and cascades)
that persist across a diverse range of robot morphologies,
and we develop efficient numerical algorithms to system-
atically identify these structures in a given robotic system.

2. Compositionality: We exploit such structures to exactly
decompose the system into simpler components. With
this decomposition, we systematically design hierarchical
controllers (where the complex system-level controller is
built out of simple, efficient subsystem controllers), all the
while still guaranteeing the overall controller’s behavior.

3. Geometric Methods: We develop our algorithms natively
on the non-Euclidean manifolds where robotic systems
evolve, surpassing inherently local methods by innately
ensuring global validity throughout the entire state space.

Ultimately, such an approach to control synthesis will facilitate
the rapid deployment of novel robot morphologies capable
of performing diverse tasks, without the tedious retraining,
manual reformulation, or laborious testing of ad-hoc methods.

II. PAST WORK

A. Planning with Dynamics for Underactuated Manipulators

Much of my past work has investigated which physical
properties of a robotic system enable us to obtain a decompo-
sition of its dynamics that facilitates control. In [39], we show



that any aerial manipulator consisting of a quadrotor equipped
with a manipulator arm (e.g., Fig. 1) is differentially flat,
and this structure persists even after relaxing the restrictive
assumptions of [36, 34, 42] to allow for arbitrary arm geometry
and degrees of freedom. Essentially, we factor the dynamics
almost globally into two subsystems, where the first subsystem
(the system center of mass, yaw, and joint angles) can evolve
arbitrarily, while the evolution of the second subsystem (the tilt
of the thrust vector) is determined uniquely by that of the first.
We use this decomposition to develop an efficient algorithm
(solving two orders of magnitude faster than, e.g., [8]) to
plan a dynamically feasible trajectory that exactly achieves
the desired end effector motion without violating the vehicle’s
underactuation constraints, and to discover and characterize
two especially dexterous classes of aerial manipulators.

B. Systematic Identification of Geometric Flat Outputs

Next, in [40] we generalize the decomposition used in our
prior work by formally proposing the notion of a “geometric
flat output”, i.e., a global, equivariant, Lie group-valued variant
of traditional local, Rn-valued flat outputs. Exploiting the
Noetherian symmetry and Riemannian structure inherent to
the dynamics of any free-flying robotic system, we derive
a sufficient condition for the immediate construction of a
geometric flat output. In followup work [37], we develop a
finite element method (building on “optimal coordinates” for
locomotion planning [10]) to apply our sufficient condition in
a numerical setting. This enables the systematic identification
of globally valid, symmetry-preserving numerical flat outputs,
and the results achieve arbitrarily small deviation from our
closed-form solutions on benchmark systems. In contrast,
prior work on numerical flat output identification was purely
local around a sampling of system trajectories and did not
preserve symmetry [28]. Overall, our geometric perspective
eliminates guesswork, extends flatness-based planning to a
global setting, and unifies numerous results in the literature
[36, 39, 17, 24, 34, 35]. By clarifying the role of symmetry in
differential flatness, we also provide insight into decades-old
open questions on why flat outputs of mechanical systems are
often intuitive physical quantities (i.e., a “set of points and
angles” [19, 20]), such as the position of the center of mass.

C. Almost Global Asymptotic Stability of Cascades

The closed-loop dynamics of a hierarchical controller
(where the state of an inner loop is thought of as the control
input of an outer loop) can often be expressed in the cascade
form ẋ = f(x, y), ẏ = g(y). The stability of cascades with
globally asymptotically stable subsystems has been studied at
length [27], but topological obstructions render these methods
incompatible with any robotic system lacking a fixed, station-
ary base. In particular, the outer loop feedback policy should
be continuous in order to ensure a smooth reference for the
inner loop, but an equilibrium of a continuous vector field on a
non-Euclidean manifold can be no better than almost globally
asymptotically stable (“aGAS”) [2]. This begs the question:
if the subsystems of a cascade are aGAS, when can we say

the same about the combined system? In our recent work
[41], we derive a compositional certificate for the aGAS of a
cascade with aGAS subsystems that depends only properties
of the decoupled subsystems and the “interconnection term”
in isolation. Our results show that for cascades of suitable
dissipative mechanical systems (a pervasive control design
[13, 14, 16, 30, 38]), the only requirement for aGAS of the
full cascade is the boundedness of system trajectories. Unlike
prior results [1], we do not assume the subsystems have strong
disturbance robustness properties often absent in practice [14].

III. ONGOING AND FUTURE WORK

A. Systematic Synthesis of Geometric Tracking Controllers
Hierarchical geometric controllers have been proposed for

certain flat systems on a case-by-case basis [14, 30, 33]. In
our ongoing work, we instead propose a unified geometric
tracking controller for any robotic system meeting our con-
ditions for geometric flat output identification [40]. To do
so, we rely on a corresponding global decomposition of the
dynamics, abstracting away the morphological details. Then,
we treat the subsystems as fully-actuated mechanical systems
in cascade, and plan to verify the stability of the overall
controller using our compositional certificates [41]. Inspired by
[9], we design the subsystem controllers by extending existing
methods restricted to systems on Lie groups [16] to the more
general setting of homogeneous Riemannian manifolds [38],
achieving almost global asymptotic tracking. Combined with
our principled approach to flat output identification [37], this
will yield a systematic procedure for the synthesis of formally
verifiable controllers for a wide range of underactuated robotic
systems, even those too complex for manual analysis.

B. “Almost Underactuated” or “Almost Flat” Systems
In Nature, hummingbirds in near-hover flight are adequately

described by a “body-fixed thrust” helicopter model, but they
exert some lateral thrust when performing agile maneuvers [3].
Similarly, aerial robots equipped with articulated propellers
capable of high-frequency, low-amplitude thrust vectoring
[22, 23] might be well-approximated on longer time-scales
by underactuated models, yet require a fully-actuated model
to capture their greater agility on shorter time scales. Broadly
speaking, how should controllers in, e.g., an “almost under-
actuated” regime exploit several models of varying fidelity
to balance efficiency vs. expressivity tradeoffs? Additionally,
even those systems that fail to exactly exhibit the structures
exploited in our past and ongoing work may still be “nearby”
in some rigorous sense. How might we extend our methods
to a perturbed regime for systems that are, e.g., “almost
differentially flat”, or take a cascade form “in the limit”?

C. Dynamic Physical Interaction in Hard-to-Reach Locations
Truly dynamic (i.e., not quasistatic) physical interaction

with the environment has thus far been quite limited for aerial
robots working in elevated locations. We hope to ultimately
endow such systems with simultaneous agilility and precision,
so they can perform complex, useful work quickly and reliably
in locations too dangerous or hard-to-reach for human beings.
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