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CASCADES IN CONTROL SYSTEMS

z = f(z,y),
y=g(y)
cascades ojten arise
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Motivation: Hierarchical Control

Thinking of z as an input, |

suppose we know that

© = f(x,K(x))is stable... u Z fla.2) T ( ) T

Lettingy =z — K(z) Y
vields a cascade... fl@, K(z) +y)
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stable foy =0 stable when y = 0
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locally asymptotically stable... can we say more?



Global Asymptotic Stability of Nonlinear Cascades

Ve assume globally asymptotically stable when ¢y = 0

= f(z,y),
y = 9(y)
'\ assume globally asymptotically stable to y = 0
When is the combined nonlinear cascade globally asymptotically stable?

GLOBAL ASYMPTOTIC TIME SCALE DISTURBANCE
ROBUSTNESS (ISS)

STABILITY OF SUBSYSTEMS SEPARATION
AND BOUNDEDNESS BETWEEN SUBSYSTEMS OF OUTER LOOP
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Motivation: Geometric Control of Robotic Systems

y/~ O differentiability requires continuity!
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HIERARCHICAL CONTROLLLER ROBOTIC SYSTEM

~or hierarchical control, we want continuous outer loop feedback
(our intuition is that z evolves continuously, so K(z) should t0o).

Fact. [f r €¢ X 2R" and f K are continuous, then the
stability of = f(x, K(x)) is no better than almost global.

Robotic systems evolve on non-Euclidean manifolds (e.g. St SO(3), SE3)).



guestion. It the subsystems of a cascade are
almost globally asymptotically stable,

when can we say the same about the combined system?

(n other words: how can we certity almost global
asymptotic stability in a compositional manner, in

order to design verifiable hierarchical controllers”



Simple Example System

x:(é’,é) c TS! é:—(sinﬁ—l—é)congb, é:—(sin9+9) when ¢ =0
y = (¢,¢) € TS ¢ = —(sin ¢ + ¢) < damped = +(sin 0 + 6’) when ¢ = 5
pendulum

subsystems are almost globally asymptotically stable.... is the Tull system?

- NO global asymptotic stability!
- NO time scale separation!

- NO disturbance robustness (almost ISS)!



Background: the Chain Recurrent Set of a Dynamical System

closed (&,7T)-chain: short jumps:

dist ((I)tz (Cl?i_l), CIZ‘Z) < €

long flow:

t, > 1

x is chain recurrent if there exists a closed (e,T)-chainat x forall e,7 > 0.

e.g. EQUILIBRIA, PERIODIC ORBITS, NON-WANDERING POINTS



Gradient-Like Dynamical Systems

A system is called gradient-like i1 all its chain recurrent points are equilibria.
Under mild assumptions, all the jollowing are gradient-like systems:

1. GRADIENT SYSTEMS
q = _gradm V(Q)
Riemannian metric = A\ cost function
2. DISSIPATIVE MECHANICAL SYSTEMS

Kinetic energy metric \ strict Rayleigh dissipation (damping)
Vi = —grad,, V(q) — £ 0 v (4)

potential energy

3. GLOBALLY ASYMPTOTICALLY STABLE SYSTEMS
4. SYSTEMS w/ A DECREASING LYAPUNOVY FUNCTION



Main Result: Almost Global Asymptotic Stability of Cascades
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Theorem (Welde, Kvalheim, and Kumar). Suppose that Dip and Zy are almost
globally asymptotically stable, and 0y and all chain recurrent points of Dy are
hyperbolic equilibria. Then, 22 is almost globally asymptatically stable and locally
exponentially stable as long as all torward trajectories are bounded.

(Some of these assumptions can be relaxed; here we state a simpler result for clarity.)



Sketch of Proot tor Main Result

Theorem (Welde, Kvalheim, and Kumar). Suppose that Dip and Zy are almost
globally asymptotically stable, and 0y and all chain recurrent points of Dy are
hyperbolic equilibria. Then, 22 is almost globally asymptatically stable and locally
exponentially stable as long as all torward trajectories are bounded.

(Some of these assumptions can be relaxed; here we state a simpler result for clarity.)

Sketch of the Proof:

For each converging initial condition y(0), x = f(x,y(t)) generates an
asymptotically autonomous semiflow with limit semiflow & = f(x,0y)

Bounded trajectories of asymptotically autonomous semiflows converge to the
chain recurrent set of the limit semiflow (Mischatkow, Smith and Thieme)

Thus, each (z(t),y(t)) converges to some hyperbolic equilibrium (z*, 0y’)

By the stable manifold theorem, almost no solutions converge to unstable (z*, 0y)
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Generalization to Upper Triangular Systems

Corollary (Welde, Kvalheim, and Kumar). Consider an upper triangular system

{CIZl f1 581,2132,...,33”),

f2($2,-~,$n),
?J{ } n-1 systems ﬂoﬂ\-
oof*
where forall ¢ =1,2,...,n, the unforced system P

= fi(xi,0;01,0442,...,0,)
s almost globally asymptotically stable with respect to 0; € X; and all chain
recurrent points are hyperbolic equilibria. Then, the full system is almost
globally asymptotically stable and locally exponentially stable with respect to
(01,02,...,0,) € X1 x Xo x --- x X, Tall its forward trajectories are bounded.



Revisiting to the Simple Example System

0 = —(sin 6 + ) cos 29,

b= —(Sin O+ qﬁ) «— damped
pendulum

In fact, the systemn ¢ = —(sin¢ + ¢) is dissipative mechanical for the kinetic
cnergy and damping kK = v =d¢ ® d¢ and potential V:S' =R, ¢+ 1 —cos,
so It Is gradient-like I.e. all chain recurrent points are equilibria (and hyperbolic).
Theorem (Koditschek). A dissipative mechanical system with a strict Rayleigh

dissipation and a polar Morse potential 1s almost globally asymptotically stable
and locally exponentially stable.

Thus, our main result implies that boundedness of this system’s
forward trajectories will suffice jor almost global asymptotic stability!






Sketch ot Ongoing and Future Work

question: can we use these compositional stability
certificates to synthesize tracking controllers

for a class of underactuated robotic systems”
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J. Welde, M.D. Kvalheim, and V. Kumar. "The Role of Symmetry in Constructing reference actual
Geometric Flat Outputs for Free-Flying Robotic Systems", ICRA 2023.
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In Summary

1. We give compositional sufficient conditions for almost global asymptotic
stability of cascade and upper triangular systems ot arbitrary size.

2. Qur results constitute an almost global extension of classic global results
a. Classic Result: GAS + GAS + Bounded => GAS
b. Our Result: aGAS + aGAS + Bounded + “Hyperbolic Gradient-Like” => aGAS
c. Note that for GAS systems, the only chain recurrent point is the stable equilibrium!
d.

Boundedness criteria is the Riemannian analog of Euclidean “linear growth” criteria
3. Arethere more general ways to show boundedness? Further work is needed.
4. We are pursuing applications in the control of underactuated robotic systems

5. Can we extend the approach to time-varying systems”?
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