
GEOMETRIC METHODS FOR EFFICIENT AND EXPLAINABLE

CONTROL OF UNDERACTUATED ROBOTIC SYSTEMS

Jake Welde

A DISSERTATION

in

Mechanical Engineering and Applied Mechanics

Presented to the Faculties of the University of Pennsylvania

in

Partial Ful�llment of the Requirements for the

Degree of Doctor of Philosophy

2025

Supervisor of Dissertation

Vijay Kumar

Professor of Mechanical Engineering and Applied Mechanics

Graduate Group Chairperson

Jordan R. Raney

Associate Professor of Mechanical Engineering and Applied Mechanics

Dissertation Committee

Daniel E. Koditschek, Alfred Fitler Moore Professor of Electrical and Systems Engineering

Michael Posa, Associate Professor of Mechanical Engineering and Applied Mechanics

Muruhan Rathinam, Professor of Mathematics and Statistics, University of Maryland, Baltimore County

James P. Ostrowski, Chief Technology O�cer, Blue River Technology



ACKNOWLEDGEMENTS

I have often imagined writing these acknowledgements, and yet I hardly know where to begin to capture
the incredible support that I have enjoyed during my time here at Penn. The PhD itself is an improbable
exercise, seemingly bordering on a fool’s errand—that a novice should create new knowledge for humanity.
Such a task becomes feasible only through the guidance, mentorship, and encouragement of so many
others, as well as the time, space, and security in which to explore freely. Having started here as an
undergrad, Penn has been my home for my entire adult life—a period of intense transformation for me,
both personally and professionally. I am �lled with immense gratitude, and I will miss this place dearly.

I am so thankful to my advisor, Vijay Kumar, who �rst welcomed me into his lab as a wide-eyed freshman
and agreed to let me stick around as a graduate student. Vijay has always made his trust in me clear—
encouraging me to take leaps where I would have hesitated—and his calm con�dence has provided an
essential counterpoint to my own doubts and anxieties at so many points along the road. The incredible
agency Vijay has given me to explore my own interests, and to dabble in areas that may not lead imme-
diately to publications, has been essential in cultivating my own research tastes and discovering which
questions really keep me up at night. Vijay has opened doors for me at every turn, always knowing what
paper to read or which person to ask any question. His extraordinary breadth and depth of experience
have ensured that my own wandering was always guided and grounded by his wisdom.

Justin Thomas was my �rst direct research mentor, who gladly spent hours teaching me the basics of
quadrotor control and di�erential �atness (long before I had any business doing either of those things).
Seeing his work in the lab convinced me that grad school seemed like a pretty fun idea (even though I had
no plans to become an academic). Justin also modeled remarkable work-life harmony as a grad student,
showing me that great research should be complemented by a great life outside the lab. I cherish the
friendship that has grown out of what began as an impactful mentor-mentee relationship.

I owe an enormous amount to Matthew Kvalheim, who I �rst began working with after he replied to my
(very niche) post-seminar question with several pages of detailed LATEX notes, a mere three days later.
Matthew’s fathomless technical depth is rivaled only by his generosity with his time. His patient mentor-
ship took my vague and bumbling interest in geometry to the point of publishing my �rst mathematically
rigorous work, and I haven’t looked back since. Some of my best memories of research in grad school were
hours spent on Zoom learning from Matthew and working through research questions together. His fre-
quent advice on all things academic (from attention to detail, to working one’s way into new professional
communities, to the job market) has been a constant resource. In many ways, Matthew has been almost
like a second advisor to me, and I eagerly look forward to seeing the success of his own PhD students.

I sincerely thankmy thesis committee for their thought-provoking questions and helpful criticisms. Michael
Posa’s grounded critiques have helped me learn to communicate better and align my abstract interests to
practical impact, a goal I continue to strive towards with his guidance in mind. I deeply appreciate Dan

ii



Koditschek’s values as a scientist and his ability to articulate the importance of understanding (and not
merely achieving a desired outcome). I am grateful for Muruhan Rathinam’s kind enthusiasm in dusting
o� his own papers from decades prior for my bene�t, and his technical feedback was essential. Lastly, a
paper copy of Jim Ostrowski’s thesis (with Vijay’s handwriting in the margins) �rst sparked my interest
in geometric mechanics, and I am grateful for the chance to learn from him directly.

Numerous other mentors have enriched my time here. Jimmy Paulos taught me to neatly frame a messy
problem. Kostas Daniilidis has been incredibly kind in his encouragement of my professional goals, and
I’ve enjoyed learning from his group. Jean Gallier has never lacked a humorous anecdote or disappointed
me on the �ner points of di�erential geometry. Beyond Penn, I have learned much from helpful chats
with Ross Hatton, Tony Bloch, Ravi Banavar, Pat Wensing, Rob Mahony, and Pieter van Goor, and many
such learnings have improved the work presented here. I am also sincerely grateful to Ram Vasudevan,
Laura Hallock, Sylvia Herbert, Greg Chirikjian, Saurav Agarwal, Nik Matni, Dinesh Jayaraman, and Chris
Proctor for their kindness and helpful professional advice as I look toward my next career phase.

A (foolishly) unanticipated bene�t of grad school was discovering a deep love of teaching, and for this I
am so grateful to the faculty who enabled me to dive head�rst into being a TA. It was in designing and
executing the “Pick and Place Challenge” for Intro to Robotics, under the guidance of Cynthia Sung and
Ani Hsieh, that I realized I wanted teaching to be an integral part of my career. Reimagining undergraduate
dynamics from a computational point of view with Michael Posa showed me how to keep old topics fresh
and exciting. Such experiences were made possible by the exceptional students I TA’d alongside—Shane
Rozen-Levy, Jess Weakly, Torrie Edwards, Xu Liu, and many outstanding Masters students. Additionally,
the pedagogical training o�ered by CETLI (and in particular, by Ian Petrie) has helped me grow as an
educator. I’m also thankful for the outstanding teachers I’ve gotten to learn from in my time here at
Penn, especially Rajiv Gandhi (whose introductory discrete math course helped me discover a love of
mathematical reasoning and the importance of “daring to be wrong”) and Bruce Kothmann (whose growth-
oriented mindset and comfort with both theory and practice are inspiring). Lastly, I am grateful to my
students, whose hard work and thoughtful questions have made teaching so rewarding—holding o�ce
hours on Zoom was among the most rejuvenating activities of the darkest days of the pandemic.

I have also been privileged to work with many outstanding peers and guide many talented and hardwork-
ing students in the lab. It has been a pleasure learn from Pratik Kunapuli’s expertise in areas comple-
mentary to my own, and I’ve enjoyed getting involved in projects led by Katie Mao and Fengjun Yang
that have expanded my horizons. Bernard Yogendran’s work ethic and enthusiasm for mastering new
skills are unmatched—working with him and Jack Campanella on hardware was a refreshing counter-
point to my more abstract pursuits—and Jack’s skill in blending his background in electrical engineering
with robotics was an essential resource. Nishanth Rao’s comfort with abstract concepts far exceeds that
of many more senior researchers, and the work presented in Chapter 7 was successful only thanks to his
and Pratik’s contributions and experimental e�orts. Watching undergraduate students (Natasha Dilamani,

iii



Nicole Luna, and Eshan Singhal) get an early taste of academic research was another rewarding outlet. In
my forays into hardware, Fernando Cladera has always been ready to lend masterful advice or just the
right piece of equipment. Many thanks also to JeremyWang and Britny Major for their skillful fabrication
assistance, and to Matt Piccoli and Luca Scheuer for help with the �ner points of brushless motor control.

MEAM and GRASP are strong communities. They operate smoothly thanks to the e�orts of skilled and
compassionate administrators, and I am grateful that any issue I encountered could be quickly resolved
by Peter Litt, Charity Payne, Jill Mallon, or Justin Nachea. I am also enormously thankful for the many
friends I have found along the way within these communities—from early days in our MEAM cohort with
Spencer Folk, Greg Campbell, and Parker LaMascus, to lab ski trips planned by Anish Bhattacharya and
the uno�cial GRASP volleyball team captained by Matt Malencia. Anusha Srikanthan has always been
ready for a heartfelt conversation about life, research, career, or nothing much at all, and Fridays have
long been my favorite day of the week, thanks to weekly lunches with my labmates. Parker and Kennedy
McAlister have become lifelong friends—the �rst time I really felt like grad school was coming to an end
was when they moved away. To those not mentioned by name, know that I value you all the same.

Grad school is full of backtracks and meanders (case in point—the chapters in this thesis were written in
the following order: 4, 2, 3, 6, 5, 7, 1, 8). The ups and downs of my life and the world at large over the
last six years included a global pandemic, family illness and death, and far greater self-doubt than I’d ever
encountered before. It is my family who got me through this, and their contributions began long before
I arrived at Penn and will continue long after departing—thank you. To my mom, for supporting and
enabling my education and growth at every juncture for nearly three decades, and for never doubting me
once—even when I ammy own harshest critic. To my dad, for nurturing my early interest in programming
and computers. To my grandma, whose day-to-day role in my life was a blessing, and whose absence is felt
acutely. To my sister Megan, for sharing your unique brand of humor and knowing “where I come from”
like no one else. Lastly, to my �ancée Anna, who has witnessed every (and I mean every) up and down
of this journey—you have helped me become better at riding these waves without letting them consume
me. I cherish your delight in my attempts to describe to you the details of my work or my latest research
hunch, and your support has been constant and unfailing. It is a joy to be your partner in life!

Finally, this thesis was supported �nancially by a National Science Foundation Graduate Research Fellow-
ship, The Institute for Learning-enabled Optimization at Scale (TILOS, an NSF AI Institute), Qualcomm
Research, and the Center for Brain-Inspired Computing (C-BRIC). Now more than ever, I am deeply grate-
ful for the investment in basic research that made this work possible.

Jake Welde
July 21, 2025

Philadelphia, PA

iv



ABSTRACT

GEOMETRIC METHODS FOR EFFICIENT AND EXPLAINABLE
CONTROL OF UNDERACTUATED ROBOTIC SYSTEMS

Jake Welde

Vijay Kumar

Robots are complex, high-dimensional systems governed by nonlinear, underactuated dynamics evolv-
ing on non-Euclidean manifolds, posing numerous challenges for control synthesis and analysis. While
optimization-based methods of control can �exibly accommodate diverse dynamics, costs, and constraints,
they often demand coarse approximations or powerful onboard processors due to their relatively poor com-
putational e�ciency. Meanwhile, learning-based controllers require o�ine training that is often brittle and
computationally burdensome. Conversely, explicit, analytical control laws with negligible computational
overhead often perform robustly, but they are typically only applicable to individual systems (or a narrow
class), limiting their broader usefulness.

However, robots are not black-box nonlinear control systems—rather, their dynamics enjoy powerful prop-
erties (e.g., symmetry and mechanical structure) that can provide traction on control design problems. In
this thesis, we explore the role of geometric methods in mitigating many of the above drawbacks, across
both analytical and data-driven methods. We study the role of symmetry in systematically identifying
e�ective abstractions for trajectory planning (“�at outputs”) in underactuated mechanical systems and
explore applications to aerial manipulation. We also synthesize explicit tracking controllers for mechan-
ical systems evolving on homogeneous Riemannian manifolds, and certify the almost global asymptotic
stability of cascades (commonly seen in the closed-loop dynamics of hierarchical controllers). Lastly, we
accelerate the training of tracking controllers via reinforcement learning using symmetry reduction, also
improving the converged policy.

In each method, a geometric perspective enables us to explainably construct abstractions that reduce di-
mensionality, enforce structure, and capture essential features, ultimately representing the system or prob-
lem in a form more convenient for analysis or design. Such reduced representations typically improve
computational e�ciency, while also encouraging generality over a broader class of systems and a�ording
insight into why prior handcrafted approaches succeeded. Such realizations can also guide mechanical
design, closing the control-morphology feedback loop and leading to synergies between a robot’s embod-
iment and its controller. By combining explainable abstractions with scalable computation, such methods
build towards a future in which robotic systems move through their surroundings as capably and dynam-
ically as their counterparts in Nature.
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Car c’est une remarque que nous pouvons faire dans toutes nos recherches mathé-
matiques : ces quantités auxiliaires, ces calculs longs et di�ciles où l’on se trouve
entrainé, y sont presque toujours la preuve que notre esprit n’a point, dès le com-
mencement, considérés les choses en elles-mêmes et d’une vue assez directe, puisqu’il
nous faut tant d’arti�ces et de détours pour y arriver; tandis que tout s’abrége et se
simpli�e sitôt qu’on se place au vrai point de vue.

For we may remark generally of our mathematical researches, that these auxiliary
quantities, these long and di�cult calculations into which we are often drawn,
are almost always proofs that we have not in the beginning considered the objects
themselves so thoroughly and directly as their nature requires, since all is abridged
and simpli�ed, as soon as we place ourselves in a right point of view.

—Louis Poinsot, Théorie nouvelle de la rotation des corps, 1851.

Translation by Charles Thomas Whitley.
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CHAPTER 1

INTRODUCTION

Robots are embodied systems—in order to deliver the practical bene�ts that our discipline has promised
society, they must move capably and intelligently through the world. Inherent to this challenge is the
problem of control synthesis—in short, how can we design algorithms that choose the appropriate actuator
commands to autonomously and reliably achieve a desired robot behavior?

1.1 Fundamental Challenges in the Control of Robotic Systems

Such control design problems can be very challenging. In particular, robotic systems evolve on high-
dimensional non-Euclidean manifolds, governed by complex, nonlinear dynamics and subject to underac-
tuation constraints. In consideration of these attributes, and in admiration of the incredible capabilities
that animals exhibit in Nature, we consider several fundamental challenges that emerge in the design of
control algorithms for these systems:

1. Computational E�ciency: As the complexity robotic systems draws ever nearer to the richness
of Nature, our approach to control synthesis must scale gracefully as well, renouncing brute compu-
tational force in favor of solutions that can accommodate complex, high-dimensional systems with
ease. In particular, agile systems like aerial and space robots are typically out�tted with lightweight
or radiation-hardened processors, requiring controllers that adhere to stringent computational bud-
gets in order to achieve real-time operation. Additionally, the rapidly escalating computational cost
of training data-driven control policies raises concerns over environmental impact as well as egal-
itarianism in scienti�c research. Finally, computationally e�cient algorithms can run on inexpen-
sive processors, improving societal access to robotic innovation, facilitating the deployment of large
swarms, and enabling economical use of robots in dangerous environments with high risk of damage.

2. Generality Across Morphologies: The extraordinary morphological variation we observe in Na-
ture re�ects the diversity of ecological niches occupied by disparate species. In much the same
manner, as we develop robotic systems capable of performing ever more varied tasks, their mor-
phological variety will also increase rapidly, requiring generalized methods that can accommodate
this diversity, instead of handcrafting solutions for individual systems. However, “good general the-
ory does not search for the maximum generality, but for the right generality”, in the words of Mac
Lane [1]. Thus, we seek methods of control synthesis that improve e�ciency, robustness, or per-
formance by leveraging the structure enjoyed by a well-de�ned class of systems (even if this may
exclude others). We aim to renounce ad hoc or bespoke solutions in favor of understanding the es-
sential characteristics underlying a method’s success, thereby expanding its domain of applicability.
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3. Global Performance: Applying linear analysis and synthesis techniques to nonlinear systems re-
quires “zooming in” on a local operational domain of interest. However, in order to exploit a system’s
full hypothetical performance envelope, performing dynamically over a wide range of conditions
(as in Nature), we require techniques that can accommodate the changing, nonlinear character of
the system over its full state space. Moreover, the state spaces of robotic systems are typically non-
Euclidean, and thus globally valid formulations must be fundamentally compatible with the system’s
topological and geometric characteristics.

Broadly speaking, the objective of this thesis is the development of methods for the control of underactu-
ated robotic systems that exhibit these favorable characteristics.

1.2 The Role of Abstraction

A central theme will be the development of abstractions that are particularly amenable to control design or
analysis. A good abstraction eliminates extraneous details while still capturing all essential features of the
problem, thereby “giving the same name to di�erent things”, in the words of Poincaré [2]. Thus, we study
properties that persist across systems, leading to broadly-useful abstractions that a�ord understanding,
beget e�cient algorithms, and obviate bespokemethods. Most crucially, abstraction is ameans of changing
our “point of view” on a problem. This notion of perspective is perhaps best captured in our chosen
epigraph (due to Poinsot, whose geometric characterization of the unforced motion of a freely-rotating
rigid body was a founding result in geometric mechanics [3]).

Of course, it’s worth recognizing that Poinsot wrote these words some decades prior to the �rst inklings
of computational complexity theory, and thus lacked a formal understanding that many computational
problems are (simply put) hard on a more fundamental level. Nonetheless, his words are at a minimum
an ideal to which we should aspire. In many of the solutions presented in this thesis, the success of the
method relies on �nding an alternative representation of the system (a “right point of view”) in which the
problem ends up being easier to solve. Such an abstraction may be of lower dimension, of simpler (e.g.,
linear) structure, free of constraints, or independent of time variation. Abstraction may also allow us to
decompose the problem into smaller, decoupled subproblems that are more easily addressed. Nonetheless,
in each case, such abstractions must fundamentally preserve those characteristics of the original system
that are essential to the problem at hand.

1.3 Geometric Control of Robotic Systems

In this thesis, we use a range of analytical tools to develop such abstractions, but a particularly central
role is played by di�erential geometry, a natural language for describing systems evolving over time while
subject to smooth structural constraints. By working natively on the non-Euclidean manifolds where
such systems evolve, we also innately ensure validity throughout the entire state space. In addition, we
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draw from decision and control theory (in order to to develop solutions for a class of systems, instead
of just one example) and dynamical systems theory (to characterize a system’s long-term behavior, even
when its exact trajectory is unknown), as well as learning and optimization (to take full advantage of the
computational resources available when closed-form solutions are not viable).

When tackling a problem via abstraction (and therein, creating a new problem to solve), the burden of
proof is on us to demonstrate that we ultimately obtain a meaningful solution to the original problem
(i.e., the abstraction should be “lossless”, or losses should at least be bounded or quanti�ed). Thus, math-
ematical rigor is essential in order to relate our abstract solutions to the concrete problem we originally
faced. However, for the complexity and diversity of robotic systems to ultimately reach even a fraction
of the splendor of Nature, we believe that as a community, our methods of control synthesis will need to
systematically leverage both formal insights and scalable computational tools. Finally, as robots of diverse
morphologies proliferate, exiting the laboratory into the real world, it seems more crucial than ever to
develop explainable algorithms—we must understand why and when our methods work, so they can be
applied broadly and with con�dence.

1.4 Roadmap and Contributions

The subsequent chapters in this thesis make up three parts. First, in Chapter 2, we provide a crash course in
certain essential aspects of di�erential geometry. While this overview is limited and cannot cover all topics
in detail, it is hopefully enough to give the reader some basic familiarity with the mathematical toolkit that
will be used throughout the thesis. Second, in Chapters 3 and 4, we consider aspects of trajectory plan-
ning, in particular related to the property of “di�erential �atness”. We develop methods for systematically
identifying “�at outputs” that both exploit and respect a natural symmetry of the system, and such abstrac-
tions aid in more conveniently representing the family of dynamically feasible trajectories of the system.
Third, in Chapters 5, 6, and 7, we develop methods relevant to the design and certi�cation of “tracking
controllers” that drive a system asymptotically towards the planned reference trajectory. Towards those
goals, we design explicit control laws suitable for fully-actuated systems and develop compositional stabil-
ity certi�cates which could (in principle) extend such methods to a hierarchical setting, suitable for many
underactuated systems. To close this section, we explore how symmetry-informed methods can accelerate
learning algorithms for tracking controller synthesis. Finally, we discuss the limitations of these contri-
butions and identify opportunities for future work in Chapter 8. In the remainder of this introduction, we
describe in greater detail the contributions of each chapter in the body of this thesis.

1.4.1 Geometric Flat Outputs of Mechanical Systems with Symmetry

The evolution of a mechanical system can be described on a “principal bundle” arising from its inherent
symmetries, and the ensuing factorization of the con�guration manifold into a “symmetry group” and
an internal “shape space” has provided deep insights into the locomotion of many robotic and biological
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systems. On the other hand, the property of “di�erential �atness” has enabled e�cient, e�ective planning
and control algorithms for various robotic systems, yet a practical means of �nding a �at output for an
arbitrary robotic system (or ensuring that it preserves the fundamental symmetries of the system) remains
an open question. In Chapter 3, we demonstrate new connections between these two domains, directly
employing symmetry to construct a �at output. We provide su�cient conditions for the existence of
a trivialization of the bundle in which the group variables themselves are a �at output, which we call
a “geometric �at output”, to underscore connections with the geometric mechanics literature. Moreover,
when the system’s symmetry is of a su�ciently strong �avor, we can ensure that the mappings both to and
from the �at space preserve this symmetry (i.e., they are equivariant). In such a trivialization, the motion
planning problem is easily solved, since a given trajectory for the group variables will fully determine the
trajectory for the shape variables that exactly achieves this motion.

A central hypothesis of our su�cient condition is the knowledge of a so-called “orthogonal section”, a
certain kind of smooth function which is orthogonal to a certain computable distribution. Closed form
solutions for such a section often exist, and sometimes yield �at outputs in agreementwith those previously
discovered through ad hoc means. However, in general, determining such a section amounts to solving
an underdetermined system of nonlinear partial di�erential equations. Thus, we develop computational
tools which approximate such solutions numerically, ultimately showing close numerical agreement with
known closed-form solutions for certain example systems.

1.4.2 Dynamically Feasible Task Space Planning for Underactuated Aerial Manipula-
tors

In Chapter 4, we address the problem of planning dynamically feasible trajectories for underactuated aerial
manipulators (consisting of an underactuated quadrotor equipped with an n-joint manipulator arm) that
achieve a desired trajectory for the end e�ector. In particular, we show that the combined underactuated
system is di�erentially �at—however, the �at outputs obtained do not, in general, correspond directly to
the motion of the end e�ector (whose prescription is the obvious task of interest). We therefore develop
a method which determines the family of �at output trajectories which will exactly produce any desired
task trajectory, even in the case of dynamic maneuvers. We also give criteria on the manipulator geometry
which will ensure certain important stability properties in our planning algorithms, informing hardware
design. The proposed approach is demonstrated in simulation for aerial manipulators of varying geometry
and number of joints performing several di�erent tasks. The simultaneous resolution of the kinematic and
dynamic constraints allows these tasks to be performed dynamically without sacri�cing accuracy.

1.4.3 Almost Global Asymptotic Tracking on Homogeneous Riemannian Manifolds

In Chapter 5, we address the design of explicit tracking controllers that drive a mechanical system’s state
asymptotically towards a reference trajectory. In particular, we consider fully-actuated systems evolving
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on the broad class of homogeneous Riemannian manifolds (encompassing all vector spaces, Lie groups,
and spheres of any �nite dimension, among other cases). In this setting, the transitive action of a Lie
group on the con�guration manifold enables an intrinsic description of the tracking error as an element
of the state space, even in the absence of a group structure on the con�guration manifold itself (e.g., for
S2). Such an error state facilitates the design of a generalized control policy depending smoothly on state
and time, which drives the geometric tracking error to a designated origin from almost every initial condi-
tion, thereby guaranteeing almost global convergence to the reference trajectory. Moreover, the proposed
controller simpli�es elegantly when specialized to a Lie group or the n-sphere. The proposed approach is
a uni�ed, intrinsic controller guaranteeing almost global asymptotic trajectory tracking for fully-actuated
mechanical systems evolving on a broad class of manifolds. In particular, we demonstrate the method as
applied to reduced attitude tracking for an axisymmetric satellite and to position and orientation tracking
for an omnidirectional aerial robot.

1.4.4 Almost Global Asymptotic Stability of Cascades

In Chapter 6, we give su�cient conditions for the almost global asymptotic stability of a cascade in which
the subsystems are almost globally asymptotically stable. (In fact, the main results can essentially be un-
derstood as a generalization of classical results on the stability of cascades whose subsystems are globally
asymptotically stable.) In particular, if the decoupled subsystems are almost globally asymptotically stable
and their only chain recurrent points are hyperbolic equilibria, then the boundedness of forward trajecto-
ries is su�cient for the almost global asymptotic stability of the full system. We show that unboundedness
of such cascades is prohibited by growth rate conditions on the interconnection term and on a Lyapunov
function for the restriction of the driven subsystem to the stable equilibrium of the driving subsystem.

In particular, a chain recurrent set of the required kind is enjoyed by several classes of systems common
in geometric control (e.g., gradient systems and dissipative mechanical systems), including the closed-loop
dynamics of the tracking controllers proposed in Chapter 5. Our results stand in contrast to prior works
that require either time scale separation, prohibitively strong disturbance robustness properties, or global
asymptotic stability in the subsystems. Moreover, we believe these results (or perhaps extensions theoreof)
have a role to play for underactuated systems in the design and certi�cation of hierarchical controllers,
whose closed-loop dynamics can often be expressed in cascade form.

1.4.5 Symmetry-Accelerated Reinforcement Learning for Trajectory Tracking Control

In prior chapters, particular structural properties (e.g., full actuation, di�erential �atness, cascade structure,
etc.) enabled us to develop particularly e�cient or convenient methodologies for analysis and control of
a certain class of systems. However, other systems may lack these properties entirely. In such settings,
we may choose to turn towards more �exible techniques, in spite of their greater computational cost or
lack of formal guarantees. In particular, reinforcement learning (RL) has shown promise in the synthesis
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of controllers for systems with complex dynamics and modest online compute budgets. However, the poor
sample e�ciency of RL and the challenges of reward design make training slow and sometimes unstable,
especially for high-dimensional systems.

In Chapter 7, we mitigate these challenges when training a tracking controller via reinforcement learning
by leveraging the inherent Lie group symmetries of robotic systems with a �oating base. We model a gen-
eral tracking problem as a Markov decision process (MDP) that captures the evolution of both the physical
and reference states. Next, we prove that symmetry in the underlying dynamics and running costs leads
to an “MDP homomorphism”, a mapping that allows a policy trained on a lower-dimensional “quotient”
MDP to be lifted to a tracking controller for the original system (with value equivalence guarantees). We
compare such a symmetry-informed approach to an unstructured baseline (trained directly on the origi-
nal MDP), using Proximal Policy Optimization (PPO) to learn tracking controllers for three systems: the
Particle (a forced point mass), the Astrobee (a fully-actuated space robot), and the Quadrotor (an
underactuated system). Results show that a symmetry-aware approach both accelerates training and re-
duces tracking error at convergence.
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CHAPTER 2

ASPECTS OF DIFFERENTIAL GEOMETRY

In this chapter, we review some essential aspects of di�erential geometry that will furnish the technical
language of this thesis. We will assume that the reader has a moderate familiarity with smooth manifolds
(providing only a brief review), and present a limited exposition of Riemannian geometry and Lie group
theory, followed by a brief exploration of the structures induced a the action of Lie group on a smooth
manifold with certain properties. The hope is to provide a “crash course” in the most relevant topics, so
that a reader with some prior exposure tomanifolds and Lie groups can acquire here a basic familiarity with
our notation and those aspects of our toolkit less widely known in the robotics community. A reader with
a comprehensive background in di�erential geometry may wish to skip ahead and reference the chapter
only when needed.

Throughout this chapter (and the thesis more broadly), we will make considerable use of commutative
diagrams, such as the following:

X Y

Z

f

h
g (2.1)

We say that a diagram commutes if, for any pair of vertices in the directed graph of the diagram, traversing
any path from the �rst vertex to the second vertex will yield the same result, when applied to any element
of the space at the start vertex. To traverse a path, we evaluate the map given by the successive compo-
sition of the maps along each edge in the path. For example, the diagram in (2.1) commutes if and only if
(g � f)(x) = h(x) for all x 2 X . Note that every node in the diagram also has an implicit “self-looping”
edge back to itself, labeled with the identity map. Commutative diagrams thus provide a compact and
illustrative means of describing relationships between maps, which we will use extensively.

2.1 Smooth Manifolds

We will give only a brief and relatively informal overview of smooth manifolds, mainly to make our no-
tation clear. In particular, we have made an e�ort to unify the notation throughout the entire text, but we
will also sometimes deliberately de�ne multiple notations for the same concept, which will be more or less
convenient depending on the point of view we wish to emphasize. We direct the less experienced reader
to [4], which gives a thorough introduction to smooth manifolds (requiring little more background than
undergraduate calculus), and [5, 6], which also explore advanced topics. Many of these concepts can also
be found in texts more specically focused on geometric mechanics, such as [7–9]. In this thesis, we will
consider control systems whose state spaces are, in general, smooth manifolds (not necessarily Rn).
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Roughly speaking, a space Q is a smooth manifold if it can be locally “thought of” as a Euclidean space
Rn (whereas the global structure of Q may perhaps be very di�erent). Perhaps the most familiar example
is the sphere S2—in particular, any local region of the Earth’s surface can be drawn on a paper map as a
subset of R2, despite the fact that the Earth as a whole is not �at, but rather shaped roughly like S2. More
precisely, the neighborhood of any point q 2 Q must be di�eomorphic to a local region of Rn (with the
same n for all neighborhoods), where a di�eomorphism is a smooth, invertible map. We denote the set of
all smooth maps from M to N (both manifolds) by C1

(M, N).

2.1.1 The Tangent and Cotangent Bundles

The tangent space at each point q 2 Q is given by

TqQ =
�
�̇(0) : � : (�", ") ! Q s.t. �(0) = q

 
, (2.2)

where each tangent vector can thus be thought of as an equivalence class of curves in “�rst-order contact”.
The tangent bundle is the collection of all the tangent spaces, namely,

TQ = {(q, vq) : q 2 Q, vq 2 TqQ}, (2.3)

where elements of the tangent bundle are often written with a subscript denoting their basepoint (i.e.,
vq 2 TqQ). Moreover, the tangent bundle projection is the map ⇡Q : TQ ! Q, vq 7! q. Thus, the instanta-
neous velocity q̇ of a smooth curve q : R ! Q lives in the tangent bundle TQ (and e�ectively encompasses
both position and velocity simultaneously). We will sometimes write (q, q̇) 2 TQ to further emphasize this
point, but we try to avoid this notation since in general, TQ 6⇠= Q ⇥ TpQ for any point p 2 Q.

Moreover, at each point q 2 Q, the cotangent space T ⇤
q Q is the dual of the tangent space, namely, the set

of all linear maps fq : TqQ ! R, and the cotangent bundle T ⇤Q is the collection of all such cotangent
spaces. The natural pairing allows us to compose any tangent and cotangent vectors at a given point,
as hfq ;vqi := fq(vq) 2 R. In mechanics, the velocity vq live in the tangent bundle of the con�guration
manifold, while the force fq live in the cotangent bundle, and their pairing gives the instantaneous rate at
which mechanical work is being done on the system.

2.1.2 Vector Fields

A vector �eld on Q is a smooth map V : Q ! TQ such that the following diagram commutes:

TQ

Q Q

⇡Q
V

id

(2.4)
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where id is the identity map— in other words, ⇡Q � V (q) = q for all q 2 Q (i.e., the base point is preserved).
X(Q) denotes the set of all vector �elds on Q, and X⇤

(Q), the set of all covector �elds on Q, is de�ned
analogously. A complete vector �eld V is one for which unique solutions to the initial value problem

q̇(t) = V
�
q(t)

�
, q(0) = q0 (2.5)

exist for all t 2 R and from all initial conditions q0 2 Q (although unique solutions always exist on a
su�ciently small interval). A complete vector �eld generates a �ow �V , where for each for q0 2 Q, the
curve t 7! �

V
t (q0) is the solution to the corresponding initial value problem. The Lie bracket of vector

�elds is the operation [ · , · ] : X(Q) ⇥ X(Q) ! X(Q) de�ned such that

[V ,W ](q) := d
dt

��
t=0

�
�

W

�
p

t
� �V

�
p

t
� �Wp

t
� �Vp

t

�
(q), (2.6)

where �X and �Y are the (perhaps local) �ows induced by X and Y . Moreover, the Lie derivative of a
smooth function f : Q ! R along a vector �eld V is the smooth function rV f : Q ! R given by

�
rV f

�
(q) := d

dt

��
t=0

f � �V

t (q). (2.7)

2.1.3 The Di�erential of a Smooth Map

Assuming for simplicity that smooth manifolds M, N ✓ Rk are embedded in an ambient Euclidean space
(although these concepts can also be de�ned completely intrinsically), for any smooth map f : M ! N ,
we can de�ne a map df : TM ! TN , called the di�erential (or tangent map, or derivative) of f , by

df
�
vm

�
:=

d

dt

����
t=0

�
f � �(t)

�
= lim

�t!0

f
�
�(�t)

�
� f

�
�(0)

�

�t
(2.8)

for any smooth curve � : (�", ") ! M such that �(0) = m and �̇(0) = vm. It can be veri�ed that the
result is independent of the particular choice of �.

For anymap f : X ⇥ Y ! Z, (x, y) 7! f(x, y), we de�ne themaps fx : y 7! f(x, y) and fy
: x 7! f(x, y)

by respectively holding the �rst and second argument constant. Then, we may de�ne the partial derivative

@xf : TX ⇥ Y ! TZ, (vx, y) 7!
�
d(fy

)
�
(vx) (2.9)

and likewise for @yf , where the non-vector argument is sometimes thought of as a temporarily �xed
parameter. We de�ne partial derivatives for functions with more than two arguments analogously.

Given a smooth, real-valued function P : M ! R, the di�erential dP : TM ! TR can also be thought
of as a covector �eld dP : M ! T ⇤M via the identi�cation TR ⇠= R ⇥ R (and thus, rV P = hdP ;V i).
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For a smooth map f : M ! N , the dual of df is the unique map df⇤
: T ⇤N ! T ⇤M de�ned such that

h!n ; df(vm)i = hdf⇤
(!n);vmi for all vm 2 TM and all !n 2 T ⇤

f(m)N. (2.10)

Moreover, the kernel of df is the set of all vectors mapped to a zero tangent vector, namely,

ker df =
�
vm 2 TM : df(vm) = 0f(m)}. (2.11)

2.1.4 Distributions

A distribution D (respectively, a codistribution F ) on a smooth manifold Q is a smooth assignment of a
linear subspace Dq ✓ TqQ (resp. Fq ✓ T ⇤Q) to each point q 2 Q. A distribution (respectively, a codis-
tribution) can also be thought of as a distribution of the tangent bundle TQ (respectively, the cotangent
bundle T ⇤Q). The rank ofD (respectively, F ) at a point q 2 Q is the dimension ofDq (respectively, Fq). In
this thesis, we will mostly consider regular distributions, which are those of constant rank. The annihilator
of D and coannihilator of F , denoted annD and coannF , are the codistribution and distribution given by

(annD)q =
�
fq 2 T ⇤

q Q : hfq ;vqi = 0 for all vq 2 Dq

 
, (2.12)

(coannF )q =
�
vq 2 TqQ : hfq ;vqi = 0 for all fq 2 Fq

 
. (2.13)

A basis of vector �elds for a regular distribution D of rank k is a set of vector �elds {X1, . . . , Xk} such that

Dq = span
�
X1(q), . . . , Xk(q)

 
, (2.14)

and a local basis is de�ned similarly over a local region. Also, we denote the set of vector �elds inX(Q) that
take values uniformly in D by �(D). Analogous concepts are de�ned for codistributions, and of course,
TQ (respectively T ⇤Q) can be thought of, in particular, as a distribution (respectively, a codistribution).
We also call a basis of vector �elds for TQ a frame, and a basis of covector �elds for T ⇤Q a coframe.

2.1.5 Notational Miscellanea

We close this section with some miscellaneous notation. In a product manifold M1 ⇥ M2 ⇥ · · · ⇥ Mk,
the ith canonical projection is the map pri : (m1, m2, . . . , mn) 7! mi. When working with coordinates
(q1, q2, . . . , qn

) for a smooth manifold Q, the symbol @i (or sometimes, @qi ) denotes the locally-de�ned
“coordinate vector �eld” associated with the coordinate qi, such that

�
@i

 
is a local frame. Frequently, we

use index notation with the Einstein summation convention, and thus will denote the quantity
P

i
aibi

more concisely by simply suppressing the sum notation, yielding aibi (where the sum is implied).
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2.2 Riemannian Geometry

In this section, we present some basic facts of Riemannian geometry, which extends many familiar aspects
of Euclidean geometry to arbitrary smooth manifolds by equipping the manifold with some additional
structure. Riemannian geometry will ultimately furnish a concise and powerful means to describe the dy-
namics of mechanical systems, particularly in the absence of nonholonomic constraints. For more detailed
presentations, we refer to [10], [5], and [9].

2.2.1 Riemannian Metrics

Any smooth manifold can be equipped with additional geometric structure in the following manner.

De�nition 2.1. A Riemannian metric (or simply ametric)  is a smoothly-varying assignment of a bilinear,
positive de�nite inner product

hh · , · iiq : TqQ ⇥ TqQ ! R (2.15)

on the tangent space TqQ at each point q on a manifold Q. When convenient, we also denote the metric
as a whole by (·, ·). We say that the pair (Q,) is a Riemannian manifold. •

Just as an inner product on a vector space induces a norm and a notion of the angle between vectors, a
metric extends similar notions to the non-Euclidean setting, as follows.

De�nition 2.2. The Riemannian norm is given by

k · k : TQ ! R, vq 7!
q

hhvq ,vq ii, (2.16)

which also induces a norm on covectors, denoted in the same manner and de�ned by

k · k : T ⇤Q ! R, fq 7! sup

kvqk=1
hfq ;vqi, (2.17)

since covectors are just linear functionals on their corresponding tangent space. The angle between two
tangent vectors in the same tangent space is given by

\( · , · ) : (vq, wq) 7! arccos

✓
hhvq ,wq ii
kvqk kwqk

◆
, (2.18)

and two vectors vq, wq 2 TqQ are called orthogonal whenever hhvq ,wq ii = 0. •

We may also formalize the notion of the length of a curve as follows.

De�nition 2.3. Let A(Q) consist of all piecewise curves � : [0, 1] ! Q made up of smooth segments with
nonvanishing velocity on the interior of each segment, called admissible curves. On the space of admissible
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curves, we may de�ne the Riemannian length functional, given by

` : A(Q) ! R, � 7!
Z 1

0

q
hh �̇(t) , �̇(t)ii dt. (2.19)

Let us de�ne the set of admissible curves from p to q, given by Aq
p = {� 2 A(Q) : �(0) = p, �(1) = q}.

Then, we may de�ne the Riemannian distance as

dist : Q ⇥ Q ! R, (p, q) 7! inf
� 2Aq

p

`(�), (2.20)

which makes any connected Riemannian manifold into a metric space. •

Perhaps the most familiar (nontrivial) example of a Riemannian manifold is the following.

Example 2.1 (The n-Sphere). A classic example of a Riemannian manifold is (Sn, ⇢), namely the n-sphere
embedded in Rn+1, where

Sn
=
�
x 2 Rn+1

: xTx = 1
 
, (2.21)

and ⇢ is the obvious “round” metric , given by

hh · , · iix : (vx, wx) 7! vx
T wx. (2.22)

Thus, the Riemannian normunder ⇢ is the restriction of the usual Euclidean norm to each tangent space. •

The manifold in the previous example is embedded in a Euclidean space and inherits the metric from the
Euclidean inner product. A similar construction works even when the ambient space is non-Euclidean.

De�nition 2.4. An isometric immersion i : (R, µ) ,! (Q,) is an immersion i : R ,! Q such that

µ(vr, wr) = 
�
di(vr), di(wr)

�
for all vr, wr 2 TR, (2.23)

where R and Q are called the immersed and ambient manifolds respectively. Given a metric on Q and an
immersion, the induced metric on R is the unique metric which makes the immersion isometric. •

However, metrics can also be de�ned intrinsically, without any reference to an ambient space.

2.2.2 The Musical Isomorphisms

The designation of a metric induces a canonical isomorphism between the tangent and cotangent bundles.

De�nition 2.5. Each Riemannian metric  induces a pair of musical isomorphisms

]
: T ⇤Q ! TQ and [

: TQ ! T ⇤Q, (2.24)
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which are de�ned such that for all fq 2 T ⇤Q and vq, wq 2 TQ, we have

hh]
(fq) ,vq ii = hfq ;vqi and hhwq ,vq ii = h[

(wq);vqi. (2.25)

When the metric  is clear from context, we may sometimes write vq
[
:= [

(vq) and fq
]
:= ]

(fq). •

It is easily veri�ed that ([
)
�1

= ], and the restriction of [ (respectively, ]) to a given tangent (respec-
tively, cotangent) space is a linear isomorphism.

In vector calculus, the gradient of a real-valued function is a vector �eld, whose de�nitionmakes no explicit
reference to a metric (but in fact implicitly relies on the canonical Euclidean metric). In the absence of a
canonical metric, an explicit choice is necessary to formalize the notion of the gradient, as follows.

De�nition 2.6. In a Riemannian manifold (Q,), for any smooth function f : Q ! R, the vector �eld

grad f : Q ! TQ, q 7! ]
�
df(q)

�
(2.26)

is called the gradient vector �eld. •

2.2.3 A�ne Connections

Wenow de�ne a class of vector �eld operations that plays a key role in Riemannian geometry (and beyond).

De�nition 2.7. An a�ne connection is an operation1 r : X(Q) ⇥ X(Q) ! X(Q)with the following prop-
erties, for all vector �elds X,Y, Z 2 X(Q), constants ↵,� 2 R, and functions f, g 2 C1

(Q,R):

1. Linearity over R in the second argument: rX

�
↵Y + �Z

�
= ↵rXY + �rXZ ,

2. Linearity over C1
(Q,R) in the �rst argument: r(fX+gY )Z = f rXZ + g rY Z , and

3. Leibniz rule: rX(fY ) = f rXY + (rXf)Y ,

where by abuse of notation, rXf is a Lie derivative (i.e., rXf = hdf ;Xi). •

We call rXY the covariant derivative of Y along X . It should also be clear from the above properties that
r is R-bilinear. A given manifold admits many a�ne connections, so it will be useful to consider special
properties possessed by certain a�ne connections which may distinguish them from others.

De�nition 2.8. An a�ne connection r is compatible with a given metric hh · , · ii if

rZhhX ,Y ii = hhrZX ,Y ii + hhX ,rZY ii (2.27)

1Note our use of the notational convention (almost universally adopted) that writes rXY in place of r(X,Y ). Except for a
suppressed set of parentheses around Y , this is in keeping with our standard notation for “currying” functions of two arguments.
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for all X, Y, Z 2 X(Q). Also, the torsion of an a�ne connection r is a vector �eld operation given by

T
r
: X(Q) ⇥ X(Q) ! X(Q), (X, Y ) 7! rXY � rY X � [X ,Y ], (2.28)

and we say that r is torsion-free when T
r
(X, Y ) is identically zero for all X, Y 2 X(Q). •

The following establishes a canonical choice of a�ne connection in the presence of a Riemannian metric.

Fact 2.1 (Levi-Civita Theorem). For any Riemannian manifold, there exists a unique a�ne connection that
is both compatible with the metric and torsion-free, known as the Riemannian (or Levi-Civita) connection.

For the remainder, r will always denote the Riemannian connection unless stated otherwise.

2.2.4 Covariant Di�erentiation Along Curves

Although we described a�ne connections in terms of vector �elds de�ned over the entire Riemannian
manifold, it will be useful to establish a notion of covariant di�erentiation for data de�ned only along a
curve in the manifold. We will need some additional constructions to make this precise.

De�nition 2.9. Given a curve � 2 A(Q), a vector �eld along � is a piecewise smooth mapX : [0, 1] ! TQ

such that the following diagram commutes:

TQ

[0, 1] Q

⇡Q
X

�

(2.29)

The set of all vector �elds along � is denoted X(�). •

In other words, a vector �eld along a curve assigns to each time in the interval an element of the tangent
space of the value of the curve at that point in time, such as the curve’s velocity �̇ 2 X(�). Note that a
vector �eld in X(�) cannot always be extended (even locally) to a vector �eld in X(Q). For example, a
self-intersecting curve may visit the same point repeatedly but with a di�erent velocity.

De�nition 2.10. The covariant derivative along � induced by an a�ne connection r is the unique opera-
tion r�̇ : X(�) ! X(�) with the following properties:

1. Distributive Property: r�̇(X + Y ) = r�̇X + r�̇Y ,

2. Liebniz Rule: r�̇(fX) = fr�̇X + ḟX , and

3. Extension Invariance: r�̇X =
�
r�̇X̃

�
� �

where X, Y 2 X(�), f : [0, 1] ! R, and X̃ 2 X(Q) is any vector �eld satisfying X = X̃ � �. •
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The third property is well-de�ned, since an a�ne connection is tensorial in its subscripted argument (i.e.,
it depends only on point values). The following allows us to pass from a covariant derivative along the
curve to derivatives of real-valued functions of time and covariant derivatives of regular vector �elds.

Lemma 2.1 (Covariant Derivatives Along a Curve in a Local Frame). Consider a local frame {Xi}, a smooth
curve � : [0, 1] ! Q remaining within the domain of this local frame, and a smooth vector �eld Y 2 X(�).
Then, there exist unique smooth coe�cient functions ui, vi

: [0, 1] ! R such that

�̇(t) = ui
(t)Xi � �(t) and Y (t) = vi

(t)Xi � �(t), (2.30)

and furthermore the covariant derivative of Y along � satis�es

�
r�̇Y

�
(t) =

�
v̇i
(t)Xi + ui

(t) vj
(t)rXi

Xj

�
� �(t). (2.31)

Proof. The existence of the coe�cient functions is trivial, since a local frame evaluated at a particular point
yields a basis for the tangent space, and all relevant quantities are smooth. Then, the result follows directly
from a careful application of the properties of r�̇ :

�
r�̇Y

�
(t) =

�
rui(t)Xi

vj
(t)Xj

�
� �(t) (2.32)

=
�
v̇j
(t)Xj + vj

(t)rui(t)·Xj
Xj

�
� �(t) (2.33)

=
�
v̇j
(t)Xj + ui

(t) vj
(t)rXj

Xj

�
� �(t), (2.34)

where all vector �elds are evaluated only along the curve, in harmony with extension invariance. ⌅

2.2.5 Parallel Transport and Geodesics

The Riemannian connection gives us an intrinsic notion of acceleration in a Riemannian manifold.

De�nition 2.11. Given a curve � 2 A(Q), a vector �eld V 2 X(�) is said to be parallel along � ifr�̇V = 0,
and the geometric acceleration of � is the vector �eld r�̇ �̇ 2 X(�). Moreover, � is called a geodesic curve
if its velocity is self-parallel (i.e., its geometric acceleration is identically zero: r�̇ �̇ = 0). •

Since a point traveling through Euclidean space with zero acceleration follows a straight line, geodesics
generalize the notion of “straight lines” from Euclidean space to general Riemannian manifolds. Although
a straight line is always the shortest path between two points in Euclidean space, in the general case,
geodesics do not necessarily minimize length.

Fact 2.2. Geodesics are stationary curves of the length functional under variations with �xed endpoints.

Thus, curves which locally maximize or minimize the length of a curve between two points are geodesics.
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De�nition 2.12. Consider a given curve � 2 A(Q). For any vq 2 T�(0)Q, let Xvq 2 X(�) denote the
unique parallel vector �eld along � with Xvq(0) = vq . Then, the parallel transport along � is the linear
map given by

⌧� : T�(0)Q ! T�(1)Q, vq 7! Xvq(1), (2.35)

where the existence and uniqueness ofXvq for each vq 2 TQ follows from standard existence and unique-
ness results for solutions of ordinary di�erential equations. •

The parallel transport map allows us to “move” vectors from one tangent space to another; however, in
general, the outcome depends on the path along which the vector is transported.

2.3 Lie Group Theory

In this section, we review some aspects of Lie group theory, which will provide a language to describe the
continuous symmetries of physical systems. We also refer the reader to [11] for a relatively informal but
very accessible introduction for readers in robotics, or [12] and [5] for more rigorous, in-depth treatments.

De�nition 2.13. A group (G, ·) is a set G equipped with a group operation

· : G ⇥ G ! G, (a, b) 7! a · b (2.36)

with the following properties (known as the group axioms):

1. Associativity: for all a, b, c 2 G, (a · b) · c = a · (b · c),

2. Identity: there exists a unique identity element e 2 G such that e · a = a · e = a for all a 2 G, and

3. Inverse: for each a 2 G, there exists a unique inverse element a�1 2 G such that a�1 ·a = a·a�1
= e.

A group is Abelian if the group operation is symmetric (i.e., a · b = b · a); otherwise, it is non-Abelian. •

In a context where the group operation is clear, we will often denote the group solely by the set G without
the operator, and we will often write the operation g · h as simply gh. The group operation also induces
several other maps from the group back to itself.

De�nition 2.14. The families of maps indexed by g 2 G and given by

Lg : G ! G, h 7! gh, Rg : G ! G, h 7! hg (2.37)

are called the left and right automorphisms of G, while the family of maps given by

Ig : G ! G, h 7! ghg�1. (2.38)
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is called the inner automorphisms. •

Clearly, if G is Abelian, then Lg = Rg and Ig = id.

2.3.1 Lie Groups

While groups of various kinds have broad and important applications, we will be particularly interested
in the following class.

De�nition 2.15. A Lie group is a group for which:

1. the set G is a smooth manifold, and

2. the group operation (a, b) 7! ab and the inverse operation a 7! a�1 are smooth. •

Lie groups play a major role in describing the symmetries of the spaces inhabited by robotic systems.

Example 2.2 (Euclidean Space). Euclidean space can be understood as the Lie group (Rn,+), since Rn is
a smooth manifold and vector addition satis�es the group axioms:

1. Associativity: (a + b) + c = a + (b + c),

2. Identity: a + b = b + a = a =) b = 0, and

3. Inverse: a + b = 0 =) b = �a.

Furthermore, the group operation (a, b) 7! a + b and the inverse a 7! �a are both smooth. •

Example 2.3 (The General Linear Group). The space of n ⇥ n invertible matrices2

GL(n) =
�
A 2 Rn⇥n

: detA 6= 0
 

(2.39)

is a Lie group under the operation of matrix multiplication. In particular, this set can be shown to be a
smooth manifold, and matrix multiplication satis�es the group axioms:

1. Associativity: (AB)C = A(BC),

2. Identity: AB = BA = A =) B = In⇥n, and

3. Inverse: A�1A = AA�1
= In⇥n.

Furthermore, the operation (A, B) 7! AB and the inverse A 7! A�1 are both smooth. •

Several other speci�c Lie groups of interest in robotics will also be described later.
2This group is often denotedGL(R, n) to distinguish it fromGL(C, n) (the group of n⇥n invertible matrices with complex

entries), but in this thesis, we consider only invertible matrices with real entries.
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2.3.2 Lie Algebras

De�nition 2.16. A Lie algebra is a vector space g endowed with a map

[ · , · ] : g ⇥ g ! g (2.40)

called the Lie bracket, such that the following properties hold for all ⇠, ⌘,! 2 g:

1. Bilinearity: [a⌘ ,b⇠ ] = ab [⌘ ,⇠ ] for all a, b 2 R,

2. Skew Symmetry: [⇠ ,⌘ ] = �[⌘ ,⇠ ], and

3. Jacobi Identity: [⇠ , [⌘ ,! ] ] + [! , [⇠ ,⌘ ] ] + [⌘ , [! ,⇠ ] ] = 0. •

For any Lie group G, let g := TeG. For each ⇠ 2 g, de�ne a vector �eld in X(G) given by

⇠G : g 7! dLg(⇠), (2.41)

called a left-invariant vector �eld. In fact, g is a Lie algebra (induced by G), endowed with the Lie bracket

[ · , · ]g : g ⇥ g ! g, (⇠, ⌘) 7!
�
[⇠G ,⌘G ]G

�
(e), (2.42)

where [ · , · ]G denotes the Lie bracket of vector �elds on G (as a smooth manifold). In particular, it is
clear that g = TeG is a vector space and dLg is a linear isomorphism on each tangent space for any g 2 G.
Moreover, it can be shown that the commutator of vector �elds possesses precisely the three properties
that we need to verify for the proposed Lie bracket: bilinearity, skew symmetry, and the Jacobi identity,
and thus [ · , · ]g given in (2.42) is a valid Lie bracket.

Going forward, g will always denote the Lie algebra of G in the previous manner. Also, we note that
because [ · , · ]g is bilinear, given a basis for g, we can express brackets in closed form in terms of the
brackets of basis vectors (called the “structure coe�cients” of g), so we need only compute [ · , · ]G �nitely
many times. Another convenient feature of Lie groups is that any tangent vector can be associated to a
particular element of the Lie algebra, using either of the following two maps.

De�nition 2.17. The left and right Maurer-Cartan forms are respectively given by

� : TG ! g, vg 7! dLg�1(vg), ⇢ : TG ! g, vg 7! dRg�1(vg). (2.43)

For any smooth curve � : [0, 1] ! G, the curves ⇠b, ⇠s : [0, 1] ! g given by

⇠b : t 7! �
�
�̇(t)

�
, ⇠s : t 7! ⇢

�
�̇(t)

�
. (2.44)
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are respectively called the body velocity and spatial velocity of �. •

The following map permits us to convert between the body and spatial representations of the velocity.

De�nition 2.18. The adjoint representation of G on g is given by

Adg : g ! g, ⇠ 7! dLg � dRg�1(⇠), (2.45)

which amounts to the restriction of dIg to TeG. •

It is straightforward to verify that ⇠s = Adg (⇠b). Finally, there is also a natural way to relate elements of
the Lie algebra to elements of the group itself, in the following manner.

De�nition 2.19. The exponential map of g into G is given by

⇠ 7! �
⇠G

1 (e), (2.46)

where �⇠G is the �ow of ⇠G 2 X(G). The logarithmic map from (a region of) G back to g is de�ned only
over the maximal neighborhood of e 2 G for which exp is bijective, on which we have log = exp

�1. •

Thus, the exponential map returns the result of starting at the identity and moving with a given body
velocity for unit time. Shortly, we will give another characterization of exp for a broad class of Lie groups.

2.3.3 Matrix Lie Groups

It is often useful to consider groups that are contained inside another group in the following sense.

De�nition 2.20. A Lie subgroup is a immersed submanifold H ✓ G that is closed under the group oper-
ation of G (i.e., if h1, h2 2 H , then h1 · h2 2 H). On the other hand, a Lie subalgebra is a subspace h ✓ g

that is closed under the Lie bracket of g (i.e., if ⇠1, ⇠2 2 h, then [⇠1 ,⇠2 ] 2 h). •

An extremely important class of Lie groups in robotics is the following.

De�nition 2.21. A matrix Lie group is any Lie subgroup of GL(n). •

In view of (2.42), it is unsurprising that the Lie algebra of anymatrix group is a subalgebra of gl(n) ⇢ Rn⇥n,
the Lie algebra of GL(n). A convenient property of matrix Lie groups is that most important quantities
in such groups can be computed using only matrix multiplication, since the elements of the Lie group, the
tangent space, and the Lie algebra can all be represented by square matrices. This makes it easy to work in
any matrix Lie group in a uni�ed manner. We state the following facts without further justi�cation, where
all operations on the right-hand side should be understood as matrix multiplication.
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Fact 2.3. The Lie bracket of a matrix Lie algebra g ✓ gl(n) is given by the matrix commutator:

[ · , · ] : g ⇥ g ! g, (⇠, ⌘) 7! ⇠⌘ � ⌘⇠. (2.47)

Similarly, the adjoint action of a matrix Lie group G on its Lie algebra g is given by conjugation:

Adg : g ! g, ⇠ 7! g ⇠ g�1, (2.48)

and its exponential map is given by the matrix exponential:

exp : g ! G, ⇠ 7!
1X

k=0

1

k!
⇠k. (2.49)

For many matrix Lie groups of interest, a closed-form expression for the exponential map is well-known
(e.g., Rodrigues’ formula for SO(3)). Given the ubiquity of matrix Lie groups in robotics, it’s worth re-
minding the reader that Lie groups can also be de�ned intrinsically without reference to GL(n) (even if
the result is isomorphic to an “explicitly” matrix Lie group), and in fact there exist Lie groups which are
not matrix at all. However, it will often be practically convenient to work with groups in this manner,
and those Lie groups of particular interest in robotics (broadly speaking) can be expressed as matrix Lie
groups. A prime example is the following well-known group of so-called “rotation matrices”.

Example 2.4. The special orthogonal group of order n is the matrix Lie group given by

SO(n) =
�
R 2 Rn⇥n

: RTR = RRT
= In⇥n, detR = 1

 
, (2.50)

while its Lie algebra is
so(n) =

�
! 2 Rn⇥n

: ! + !T
= 0

 
, (2.51)

namely the set of n ⇥ n skew-symmetric matrices. The inverse map is given by ·�1
: R 7! RT. •

The elements of the special orthogonal group can be thought of as describing rotations of an n-dimensional
space about the origin. As a result, they furnish a natural means to describe the orientation of a rigid body
in 2D or 3D. Similarly, the following group of “transformation matrices” can be used to describe the full
pose of a rigid body in n-dimensional space, comprising both its orientation and position.

Example 2.5. The special Euclidean group of order n is the matrix Lie group given by

SE(n) =

("
R x

0 1

#
2 Rn+1⇥n+1

: R 2 SO(n), x 2 Rn

)
, (2.52)
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while its Lie algebra is given by

se(n) =

("
! ⇠

0 0

#
2 Rn+1⇥n+1

: ! 2 so(n), ⇠ 2 Rn

)
. (2.53)

Finally, it is easily veri�ed that

(·)�1
:

"
R x

0 1

#
7!

"
RT �RTx

0 1

#
. (2.54)

is the explicit form of the inverse map. •

2.4 Group Actions

In this section, we describe a manner in which Lie groups interact with other manifolds. This interaction
provides an explicit means of describing the symmetry of various data de�ned on the manifold. A more
thorough exploration can also be found in [8] and [9].

De�nition 2.22. A (left) action of a Lie group G on a manifold Q is a smooth map

� : G ⇥ Q ! Q (2.55)

such that for all q 2 Q and g, h 2 G:

1. �(e, q) = q, and

2. �(g,�(h, q)) = �(gh, q). •

The choice to work with left actions is historically motivated (see, e.g., [13]) and a matter of preference.
Moreover, right actions can be de�ned analogously, in which case the second property becomes

 
�
g, (h, q)

�
=  (hg, q), (2.56)

since we multiply “on the right” in the group. It’s easy to verify that for any left action �, the map
 : (x, g) 7! �(g�1, x) is in fact a right action. Except when explicitly speci�ed otherwise, all group
actions considered in this thesis will be left actions.

Most of the time, we will write the action of each g 2 G as a map �g : Q ! Q to emphasize its nature as
a family of di�eomorphisms, parametrized by the elements of the group. This perspective highlights the
viewpoint that a group action is nothing but a group homomorphism � : G ! Di↵(Q), where Di↵(Q)

is the di�eomorphism group of the manifold Q (but we do not explore this further here). We can also
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illustrate the required properties of a group action via the following commutative diagram:

Q Q

Q

�h

�gh

�g

�e

(2.57)

It is also straightforward to see that the left and inner automorphisms of G given in Def. 2.14 are in fact
left actions of G on itself, while the right automorphisms constitute a right action of G on itself, and the
adjoint representation given in Def. 2.18 is a left action of G on g.

Example 2.6 (Body-Fixed Rotation). Consider the Lie group G = (S1,+), where we represent elements of
the group by angles, and addition operates modulo 2⇡. Let S1 act on the manifold Q = SO(3) via

� : S1 ⇥ SO(3) ! SO(3), (✓, R) 7! R ·

2

64
cos ✓ � sin ✓ 0

sin ✓ cos ✓ 0

0 0 1

3

75 . (2.58)

If R 2 SO(3) represents the orientation of a rigid body, this action can be understood as a rotation by an
angle ✓ around the third body-�xed axis. It is easily veri�ed that this is a valid group action, since:

1. �0(R) = R (i.e., a rotation by an angle of zero (the identity element of S1) does not change the
orientation of the body), and

2. �↵ � ��(R) = �↵+�(R), (i.e., a rotation by an angle ↵ followed by a rotation by an angle � yields
the same result as a rotation by an angle ↵+ �). •

2.4.1 Properties and Orbits

The following are some useful properties that a group action may perhaps enjoy.

De�nition 2.23. A group action � is said to be:

1. free, if the map �g has no �xed points for all non-identity g 2 G (i.e., �g(q) = q () g = e),

2. proper, if the map (g, x) 7!
�
�g(x), x

�
is proper (i.e., the preimage of any compact set is compact)

3. transitive, if for each pair q1, q2 2 Q, there exists some g 2 G such that �g(q1) = q2, and

4. e�ective, if only the identity element acts trivially on all elements (i.e., �g = id () g = e). •

Clearly, all free actions are e�ective, but not all e�ective actions are free. Also, properness is a relatively
mild property (e.g., any compact group must act properly) enjoyed by most “garden variety” group actions.
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Group actions establish a relationship between certain pairs of points, in the following manner.

De�nition 2.24. The �-orbit (or simply orbit) of any point q 2 Q, denoted �G(q), consists of all points
to which q is sent by the action as we vary the group element (i.e., �G(q) = {�g(q) : g 2 G}). •

Clearly, a group action naturally partitions the manifold into equivalence classes, each of which is a single
orbit of the action. In particular, a transitive action has a single orbit, while every orbit of the trivial action
(i.e., the action given by �g = id for all g 2 G) contains a single point. It is also natural to ask to which
orbit a given point in the manifold belongs, as follows.

De�nition 2.25. The quotient space, denoted Q/G when the group action is understood, is the space
whose elements are the orbits of the group action. The projection ⇡ : Q ! Q/G sends each element of the
manifold to its orbit in the quotient space. •

Clearly, the following diagram must commute:

Q Q

Q/G

�g

⇡ ⇡ (2.59)

Quotient spaces can be quite messy, but under some additional assumptions, they are quite well-behaved.

Fact 2.4. The quotient spaceS = Q/G of a free and proper action inherits a unique smoothmanifold structure.

Example 2.6 (Body-Fixed Rotation, continued). The same S1-action on SO(3) is:

1. free, since rotation by a nonzero angle always changes a body’s orientation, and

2. proper, since S1 is compact.

Hence, the quotient space is a smooth manifold (and in particular, SO(3) / S1 ⇠= S2), where the projection
map can be given by

⇡ : SO(3) ! S2, R 7! R e3. (2.60)

This projection maps the body’s orientation to the world frame coordinates of its third body axis, the axis
of the rotation performed by the group action. This is intuitive, since a rotation leaves unchanged exactly
those points which lie on its axis. •

2.4.2 Invariance and Equivariance

Group actions are helpful in describing the symmetry of other data de�ned on the manifold on which the
group acts. Such symmetries come in two primary �avors: invariance and equivariance. In the most basic
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sense, the two properties can be easily distinguished by asking whether the corresponding commutative
diagram is a triangle or a square. However, many notions of equivariance can be reformulated as a notion
of invariance from an alternative perspective (and vice-versa), as we will see.

De�nition 2.26. A map f : M ! N is invariant with respect to a group action �g : M ! M if the fol-
lowing diagram commutes:

M

M N

�g

f

f

(2.61)

Moreover, a map f : M ! N is equivariant with respect to group actions�g : M ! M and g : N ! N

if the following diagram commutes:

M N

M N

�g

f

 g

f

(2.62)

Thus, invariance involves transforming only the input of the function, while equivariance involves also
transforming the output in a corresponding manner. •

The second action in the above diagram could, for example, be the left action of the group on itself (e.g.,
Lg : h 7! gh), the lifted action induced by the di�erential of a given group action (i.e., d�g : TQ ! TQ), or
a completely separate action altogether. Also, invariance is clearly a special case of equivariance, wherein
the group acts trivially on the codomain (i.e.,  g = id for all g 2 G).

Example 2.7 (Invariance of the Norm Under Rotation). Let G = SO(n) act on Q = Rn via

� : SO(n) ⇥ Rn ! Rn, (R, x) 7! R x, (2.63)

corresponding to rotation about the origin. The Euclidean norm given by

���� ·
���� : Rn ! R, x 7!

p
xTx (2.64)

is invariant under this action, since

�����R x
���� =

q
(R x)T(R x) =

q
xT(RTR)x =

p
xTx =

����x
����. (2.65)

We may also note that this action is not free, since �R(0) = 0 for any R 2 SO(n), nor is it transitive,
since vectors with di�erent norms lie within di�erent orbits. •

The following map is also a nice example of equivariance.
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De�nition 2.27. For a free action � : G ⇥ Q ! Q, the phase o�set map �q : �G(q) ! G of any point
q 2 Q is the unique map such that for all p 2 �G(q), �q(p) = g if and only if �g(q) = p •

Proposition 2.1. �q is equivariant, i.e., the following diagram commutes:

�G(q) G

�G(q) G

�g

�q

Lg

�q

(2.66)

Proof. Wewant to show thatLg � �q(p) = �q � �g(p) for all p 2 �G(q). Since p and q lie on the same orbit,
there exists some h 2 G such that p = �h(q). Thus, the left-hand side can be written as Lg � �q � �h(q),
which equals gh from the de�nition of �q . Likewise, the right-hand side can be written �q � �g � �h(q) =

�q � �gh(q) = gh, so we are done. ⌅

De�nition 2.28. Consider a group action � : G ⇥ Q ! Q. We de�ne notions of �-invariance for the
following data de�ned on Q, where each condition below must hold for all g 2 G:

• a subset A ✓ Q is �-invariant if A = �g(A),

• a Riemannian metric  on Q is �-invariant if  = 
�
d�g( ·), d�g( ·)

�
,

• a vector �eld V 2 X(Q) is �-invariant if V = d�g � V � �g�1 ,

• a covector �eld ! 2 X⇤
(Q) is �-invariant if ! = d�

⇤
g�1 � ! � �g�1 ,

• a distribution D ✓ TQ is �-invariant if D = d�g(D), and

• a codistribution F ✓ T ⇤Q is �-invariant if F = d�
⇤
g(F ). •

Although the de�nitions of �-invariance for distributions and codistributions above look very similar, it
should be noted that for a �-invariant distribution D, a �-invariant codistribution F , and any g 2 G,

Dq = d�g

�
D��1

g (q)

�
, whereas Fq = d�

⇤
g�1

�
F��1

g (q)

�
. (2.67)

The conditions on vector and covector �elds can also be expressed via the following commutative diagrams:

Q TQ

Q TQ

�g

V

d�g

V

Q T ⇤Q

Q T ⇤Q

�g

!

d�
⇤
g�1

!

(2.68)
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It’s fair to say that the previous diagrams look a lot more like the notion of an equivariant (vs. invariant)
map from De�nition 2.26. For that reason, some authors choose to call such a vector or covector �eld
“equivariant”. Conversely, the perspective of De�nition 2.28 can be rephrased as V being a �xed (i.e.,
invariant) point of the action

 : G ⇥ X(Q) ! X(Q), V 7! d�g � V � �g�1 , (2.69)

and ! being a �xed point of the action

⇥ : G ⇥ X⇤
(Q) ! X⇤

(Q), ! 7! d�
⇤
g�1 � ! � �g�1 , (2.70)

where the action (resp. ⇥) acts upon the function spaceX(Q) (resp. X⇤
(Q)) towhichV (resp. !) belongs.

While these perspectives are mathematically equivalent, clarifying the relationship between them can help
minimize confusion in regards to the nomenclature.

Next, we prove a helpful lemma which characterizes how the musical isomorphisms of an invariant Rie-
mannian metric behave. This result can also be helpful for performing calculations with d�

⇤
g , the dual of

the lifted action, using the perhaps more familiar properties of d�g , the lifted action itself.

Lemma 2.2. For a�-invariant Riemannian metric  on Q and any g 2 G, the following diagram commutes:

TQ TQ

T ⇤Q T ⇤Q

d�g

d�g�1

d�
⇤
g

d�
⇤
g�1

] [[ ] (2.71)

Proof. Letting p = �g(q) for some p, q 2 Q, then for any vp 2 TpQ and fq 2 T ⇤
q Q, we compute

h[ � d�g � ]
(fq);vpi = 

�
d�g � ]

(fq), vp

�
(2.72)

= 
�
]
(fq), d�g�1(vp)

�
(2.73)

= hfq ; d�g�1(vp)i (2.74)

= hd�⇤
g�1(fq);vpi. (2.75)

To complete the proof, it su�ces to note that (]
)
�1

= [, (d�g)
�1

= d�g�1 , and (d�⇤
g)

�1
= d�

⇤
g�1 . ⌅

26



2.5 Principal Bundles

In this section, we explore in greater detail the geometric structure induced on a manifold by a free and
proper action, creating a setting known as a “principal bundle”. The structure induced by such a group
action has played a major role in the study of a diverse range of locomotory phenomena, and thus merits
a tidier package in which to collect terminology and further analyze the geometric picture. [13] provides a
relatively accessible introduction to many of these ideas, while a very thorough exploration is found in [6].

De�nition 2.29. A (left) principal bundle is a manifold Q equipped with:

1. � : G ⇥ Q ! Q, the free and proper (left) action of a Lie group G on Q, and

2. ⇡ : Q ! S, the smooth projection to the quotient space induced by the action.

We call Q the total space, S = Q/G the shape space, and G the symmetry group. We may also summarize
this data by saying that ⇡ : Q ! S is a principal G-bundle. The �ber above s 2 S is given by ⇡�1

(s). •

Of course, right principal bundles can be de�ned analogously. It should be clear that each �ber is di�eo-
morphic to G, since it is in smooth, one-to-one correspondence with the orbit �G(q) for any q 2 ⇡�1

(s).
This motivates the description of Q as a “bundle” of �bers, since (as a set) it is just the union of the �bers
over each point in the shape space S.

De�nition 2.30. A section of a principal bundle ⇡ : Q ! S over a region U ✓ S is a smooth map of the
form � : U ! Q such that the following diagram commutes:

Q

U U

⇡�

id

(2.76)

When U = S, we say that the section is global; otherwise, it is local. When ⇡ is clear from context, we
denote by �(Q) the family of all global sections of ⇡ : Q ! S. •

In other words, a section smoothly selects one element of total space from the �ber above each point within
a local region of shape space, just as a cross-sectional view of a three-dimensional object depicts one point
along each line normal to the cutting plane. A section can also be understood as a “right inverse” of the
projection, or a “lift of id through ⇡”.

Example 2.8 (Translation of a Rigid Body). Consider the action of the Lie group G = (R3,+) on the man-

27



ifold Q = SE(3) given by

�d : SE(3) ! SE(3),

"
R x

0 1

#
7!

"
R x + d

0 1

#
. (2.77)

This action can easily be veri�ed to be free and proper, hence we can say that SE(3) is a principal
R3-bundle. Unsurprisingly, SE(3) /R3

= SO(3), and the projection operator is given by

⇡ : SE(3) ! SO(3),

"
R x

0 1

#
7! R, (2.78)

while the �ber over any R 2 SO(3) is given (by de�nition) as

⇡�1
(R) =

("
R x

0 1

#
: x 2 R3

)
, (2.79)

namely the set of all poses with a given orientation. Thus, any section � 2 �
�
SE(3)

�
must take the form

� : SO(3) ! SE(3), R 7!
"
R ⌧(R)

0 1

#
, (2.80)

for some smooth map ⌧ : SO(3) ! R3. For example, if some body-�xed point has coordinates a 2 R3 in
the body-�xed frame, then choosing ⌧ : R 7! �R a results in a section � which keeps the world coordi-
nates of this point constant as we vary the body’s orientation (i.e., the body rotates “about” that point). •

2.5.1 Trivializations

The interpretation of Q as a bundle of �bers, where each �ber is di�eomorphic to G and associated with a
single point in S, seems to suggest thatQ has something in common with the Cartesian product S ⇥ G. In
fact, it is guaranteed thatQ is locally trivial, meaning that for each point s 2 S, there is some neighborhood
U of s such that ⇡�1

(U) is di�eomorphic to U ⇥ G. However, in general, this factorization into group
and shape components can only be done locally. Also, such a factorization is not unique, and without
additional structure, no choice is canonically designated. We explore these aspects in detail below.

De�nition 2.31. A product bundle is a principal bundle for which:

1. the total space is the product of the shape space and symmetry group (i.e., Q = S ⇥ G),

2. the group acts directly on the second factor (i.e., �g = id⇥Lg , so that �g(s, h) = (s, gh)), and

3. the projection is the canonical projection onto the �rst factor (i.e., pr1 : (s, g) 7! s). •
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We now examine a very important class of mappings that makes an arbitrary principal bundle “look like”
a product bundle, at least locally. Metaphorically speaking, such maps are a means of “combing out” the
�bers of the bundle (like so many strands of tangled hair).

De�nition 2.32. A trivialization of a principal bundle ⇡ : Q ! S over a regionU ✓ S is a di�eomorphism

 : U ⇥ G ! ⇡�1
(U) (2.81)

that is equivariant and �ber-preserving, in the sense that the following diagram commutes:

U ⇥ G ⇡�1
(U)

U ⇥ G ⇡�1
(U)

U

�g

 

 
id⇥Lg

pr1 ⇡

(2.82)

When U = S, we say that the trivialization is global; otherwise, it is local. •

It should be clear that a trivialization can be understood as a special kind of di�eomorphism between a
(local) region of the original bundle ⇡ : Q ! S and the product bundle pr1 : U ⇥G ! U . In particular, the
local structure of the original bundle is preserved, because the action of the group on the total space drops
to the action of the group on itself, in an equivariant manner. It’s worth noting that some authors would
call �1 the trivialization (instead of ), but this is equivalent to our de�nition, since is a di�eomorphism.

Although local trivializations must exist, global trivializations do not always exist (and smoothness is
the notable obstruction). We say that a principal bundle ⇡ : Q ! S is trivial if a global trivialization
 : S ⇥ G ! Q exists; otherwise, it is nontrivial. Any product bundle is trivial by construction, since
the identity map is a valid trivialization (but it is not the only choice—one can easily check that for any
smoothmap� : S ! G, themap (s, g) 7!

�
s,Lg � �(s)

�
is also a global trivialization of the product bundle

pr1 : S ⇥ G ! S). On the contrary, the S1 bundle over S2 of Example 2.6 (corresponding to rotation about
a body-�xed axis) is an example of a nontrivial bundle of great practical signi�cance, as we will see later.

Example 2.9 (Articulated Body System). Consider a product bundle with symmetry group G = SE(3),
shape space S = Tn, and total space Q = Tn ⇥ SE(3). This can be recognized as the con�guration mani-
fold of a system of coupled rigid bodies (e.g., a free-�ying multibody robot with revolute joints). The most
obvious trivialization for this (and any) product bundle is the identity map:

 : Tn ⇥ SE(3) 7! Tn ⇥ SE(3), (s, g) 7! (s, g).
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One way of interpreting this trivialization is that we have chosen to use the body-�xed coordinate frame of
some previously-designated “root body” to describe the pose of the system in SE(3). However, a coordinate
frame �xed to any other body in the system would also furnish a valid trivialization. In particular, if
hi : Tn ! SE(3) is a smooth map describing the pose of the ith body in the system relative to the root
body, as a function of the con�guration of the internal joints of the mechanism, then

 i : Tn ⇥ SE(3) 7! Tn ⇥ SE(3), (s, g) 7!
�
s,Lg � hi(s)

�
(2.83)

is another valid trivialization, because it is a di�eomorphism and the second component is easily seen to
be equivariant, since the group action in a product bundle simply acts on the second factor on the left.
These considerations highlight the fact that the designation of the “root body” is arbitrary; to factor the
con�guration of an articulated body system into its bulk pose in SE(3) and the con�guration of its internal
joints in Tn, it is equally natural to use any body-�xed coordinate frame. More generally, a trivialization
can be obtained from any smooth shape-dependent pose o�set from an existing body-�xed frame. •

In the case of a principal bundle which is not a product bundle (and perhaps nontrivial), it may be unclear
how to construct the “�rst” local trivialization from scratch, given the equivariance requirements imposed.
However, we can do this directly from a section, in the following manner.

Proposition 2.2. Sections and trivializations of a principal bundle are in one-to-one correspondence.

Proof. It will su�ce to construct a bijection between the sections and trivializations of a principalG-bundle
⇡ : Q ! S. Given a section � : U ! Q over some region U ✓ S, we claim that the map

 : U ⇥ G ! ⇡�1
(U), (s, g) 7! �g � �(s) (2.84)

is a trivialization, which we call the canonical trivialization induced by �. In particular,

⇡ �  (s, g) = ⇡ � �g � �(s) = ⇡ � �(s) = s = pr1(s, g), (2.85)

since �g preserves the orbits by de�nition. Moreover, we compute

�h �  (s, g) = �h � �g � �(s) = �hg � �(s) =  (hg, s) =  � (id⇥Lh)(s, g). (2.86)

Thus, (2.82) commutes, so  is a trivialization of ⇡ : Q ! S over the region U . Moreover, given a trivial-
ization  : U ⇥ G ! ⇡�1

(U) over some region U ✓ S, we claim that

� : U 7! ⇡�1
(U), s 7!  (s, e) (2.87)
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is a section, which we call the canonical section induced by  . From (2.82), it’s easy to see that

⇡ �  (s, e) = pr1(s, e) = s, (2.88)

and thus (2.76) commutes, so � is a section of ⇡ : Q ! S over the region U . Finally, it’s clear that for a
given trivialization , using its canonical section as de�ned in (2.87) to construct the canonical trivialization
de�ned in (2.84) yields exactly the trivialization we started with, since �g �  (s, e) =  (s, g). Thus we
have a bijection, completing the argument. ⌅

In view of this correspondence, the following corollary is obvious.

Corollary 2.1. A principal bundle is trivial if and only if there exists a global section.

Finally, we give a concrete example of constructing a trivialization directly from a section.

Example 2.6 (Body-Fixed Rotation, continued).We once again revisit the principal bundle ⇡ : SO(3) ! S2,
R 7! R e3 with symmetry group S1, arising from the rotation of a rigid body in SO(3) around the third
body-�xed axis. This bundle happens to be nontrivial (i.e., global trivializations do not exist), hence neither
do global sections). However, we may de�ne two maps

�N : S2 \ { �e3 } ! SO(3),

2

64
s1

s2

s3

3

75 7!

2

6664

1 � s1
2

s3+1
�s1s2
s3+1 s1

�s1s2
s3+1 1 � s2

2

s3+1 s2

�s1 �s2 s3

3

7775
, (2.89)

�S : S2 \ {+e3 } ! SO(3),

2
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75 7!
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1 +
s1
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s3�1
�s1s2
s3�1 s1

s1s2
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s3�1 s2

s1 �s2 s3

3

7775
, (2.90)

which can be veri�ed to be sections, since they are smooth and ⇡ �� = id. Each section is de�ned over the
entire shape space except for a single point (the “south pole” for �N and the “north pole” for �S), so these
sections are almost-global (i.e., they are de�ned over an open dense set in the shape space). The canonical
trivialization for each of these sections then arises directly as a result of Proposition 2.2. •

2.5.2 Principal Connections

The rich geometric structure of a principal bundle lifts to the tangent bundle as well. Our �rst step in this
direction is to analyze the in�nitesimal behavior of the group action.

De�nition 2.33. The in�nitesimal generator of any ⇠ 2 g is the map

⇠Q : Q ! TQ, q 7! d
dt

��
t=0
�(exp t⇠, q), (2.91)
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which is in fact a vector �eld ⇠Q 2 X(Q). •

In the previous de�nition, the con�guration is acted upon by a curve t 7! exp t⇠ in the group, which is an
integral curve of the left-invariant vector �eld ⇠G : G 7! TG, g 7! dLg(⇠). In this regard, the in�nitesimal
generator can be thought of as lifting elements from the Lie algebra to the tangent bundle of the total space,
in accordance with the group action. In a product bundle (or in a trivialization), the in�nitesimal generators
are simply the elements of the Lie algebra pushed forward by the group’s right action on itself:

⇠Q : Q ! TQ, (s, g) 7!
�
0, dRg(⇠)

�
. (2.92)

In view of this local description, it should be clear that the in�nitesimal generators are not �-invariant
vector �elds, since the group acts on the left of the second factor in a product bundle. It can also be easily
veri�ed that for all ⇠ 2 g, we have ⇠Q(q) = d�

q
(⇠).

The group action also designates a particular subspace of each tangent space (i.e., a distribution) as follows.

De�nition 2.34. The vertical distribution V Q ✓ TQ is given by V Q = ker d⇡. •

The vertical distribution therefore consists of all vectors in TQ which are tangent to the group orbits, thus
having no component pointing “across” �bers. It can also be shown that

VqQ =
�
⇠Q(q) : ⇠ 2 g

 
(2.93)

and therefore the vertical subspace at every point on the manifold is isomorphic to the Lie algebra of the
symmetry group. It is natural to wonder how we might describe another subspace at each point on Q

which, together with V Q, would split all of TQ into two complementary distributions, in a manner which
respects the symmetry described by the group action. These considerations are formalized as follows.

De�nition 2.35. A principal connection is a horizontal distribution, denoted HQ ✓ TQ, such that:

1. HQ and V Q are complementary (i.e., TQ = V Q � HQ),

2. HQ is �-invariant (i.e., d�g(HQ) = HQ), and

3. the assignment of HqQ to each point q 2 Q is smooth. •

Since V Q and HQ are complementary by de�nition, we can split any given tangent vector into its vertical
and horizontal components (with respect to a particular choice of HQ).

De�nition 2.36. The vertical and horizontal projections are the unique idempotent maps ver : TQ ! V Q

and hor : TQ ! HQ such that vq = ver vq + hor vq for all vq 2 TQ. •
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As stated above, principal connections are not unique, and much like trivializations, no admissible choice
is intrinsically more natural than any other. However, given some additional structure, a particular choice
of principal connection can simplify the analysis of a particular problem. We now discuss several examples
that are relevant to practical engineering problems, to build some intuition as to their role.

Example 2.10 (Mechanical Connection). Suppose that in addition to being a principal bundle, (Q,) is also
a Riemannian manifold, where  is �-invariant. Then, a natural choice for the horizontal distribution is
the orthogonal complement of the vertical distribution with respect to the metric, namely,

HQ = V Q?
=
�
hq 2 TQ : hhhq ,vq ii = 0 for all vq 2 VqQ

 
. (2.94)

In mechanics, this is called themechanical connection derived from the kinetic energy metric of a mechani-
cal system with symmetry. Concretely, the horizontal distribution then contains all those velocities which
do not contribute to the system’s net momentum. This connection plays a key role in understanding the
conservation laws which arise due to symmetry, as characterized by Noether’s Theorem. •

In the previous example, a particular choice of principal connection was especially salient due to the pres-
ence of additional structure, namely the metric. Similarly, the designation of a global trivialization of
particular signi�gance suggests another choice of principal connection.

De�nition 2.37. For any global trivialization  : S ⇥ G ! Q, the principal connection given by

HQ = ker d(pr2 � �1
) (2.95)

is called the canonical �at connection induced by  . •

We emphasize the parallelism between this de�nition and that of V Q, since ⇡ = pr1 � �1. Strictly speak-
ing,  must be global for the canonical �at connection to be well-de�ned on the entire bundle, but we will
sometimes abuse this terminology in a nontrivial bundle when it is clear that we are working only over a
local trivialization. The following aims to build some intuition about the canonical �at connection.

Example 2.11 (Self-Motion Connection). Consider an orbital manipulator (i.e., a space vehicle equipped
with a serial manipulator arm with revolute joints). This system is an example of the free-�ying ar-
ticulated body system considered in Example 2.9, whose con�guration manifold is the product bundle
Q = Tn ⇥ SE(3). To perform manipulation tasks, it is necessary to control the pose of the end e�ector,
and thus the trivialization constructed using the end e�ector pose is particularly natural.

In fact, the canonical �at connection of this trivialization contains all those velocities which do not move
the end e�ector. This is analogous to the nullspace of the manipulator Jacobian, describing the tangent
space of the so-called self-motion manifold at that con�guration (i.e., the submanifold of the con�gura-
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tion manifold along which the con�guration may evolve without a�ecting the end e�ector pose). This
connection therefore captures the system’s redundancy, describing all those directions along which the
con�guration may be adjusted (by altering both the vehicle pose and the arm’s joint angles) without alter-
ing the end e�ector pose. The invariance of this principal connection (i.e., of the horizontal distribution)
re�ects the fact that such directions can be described in a manner that is independent of the absolute pose
of the system (e.g., using the end e�ector frame). •

There are many other examples of principal connections which characterize the essential features of other
robotic or biological systems, especially locomotion systems, which achieve bulk motion through space (i.e.,
the symmetry group) via undulatory motion in the shape space. In this setting, the connection character-
izes the e�ect of “internal” motions in the shape space on the “external” motion in the group. Examples
include the kinematic connection arising fromChaplygin nonholonomic constraints, themechanical connec-
tion mentioned above which describes the reorientation of a falling cat, and the nonholonomic connection
arising from a combination of momentum conservation and nonholonomic constraints [13]. This perspec-
tive also extends to more exotic forms of locomotion, such as microorganisms swimming at low Reynolds
numbers, which are described by the viscous connection [14]. Our use of principal connections does not
�t precisely within this formalism, so we will not explore the details fully, but only mention the rich and
beautiful existing body of work relying on principal connections in both robotic and biological locomotion.

2.5.3 Connection Forms

Principal connections also admit an equivalent description in terms of di�erential forms. Although we
will usually work with principal connections as distributions in this dissertation, it will occasionally be
convenient to employ this alternative perspective.

De�nition 2.38. A principal connection one-form is a one-form A : TQ ! g for which:

1. A is equivariant, in the sense that the following diagram commutes:

TQ g

TQ g

A

T�g Adg

A

(2.96)

2. and vertical vectors are mapped to their generators (i.e., A(⇠Q) = ⇠). •

This alternative description is related to the distribution perspective on principal connections as follows.

Fact 2.5. Principal connections and principal connection one-forms are in one-to-one correspondence. In par-
ticular, they are identi�ed by the relationship kerA = HQ.
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The di�erential forms perspective on principal connections makes it convenient to explicitly de�ne the
vertical and horizontal projections. Using the previous identi�cation and the fact that connection forms
map vertical vectors to their generators, it is straightforward to show that these maps are given by

ver : TQ ! V Q, vq 7!
�
A(vq)

�
Q
(q), hor : TQ ! HQ, vq 7! vq � ver vq. (2.97)

We can also describe a principal connection one-form via a trivialization and a one-form on Q/G.

Fact 2.6 (Local Form of Connection). In a trivialization  �1
(q) =

�
s(q), g(q)

�
, any principal connection

one-form A can be written
A = dRg�1(dg) + Adg � A(ds) (2.98)

where the one-form A : TS ! g is called the local form of A.

Example 2.12 (Canonical Flat Connection One-Form). The kernel of any connection form is its horizontal
distribution, and the canonical �at connection is the kernel of the trivialization’s group component. Thus,
the connection form of the canonical �at connection is A = dRg�1(dg), so its local form is A = 0. •

Example 2.13 (Mechanical Connection One-Form). Consider a principal bundle ⇡ : Q ! S with an invari-
ant Riemannian metric . Following [13], let the momentum map J : TQ ! g⇤ and the locked inertia
tensor I(q) : g ! g⇤ be de�ned such that for all vq 2 TQ and all ⇠, ⌘ 2 g,

hJ (vq);⇠i = hhvq ,⇠Q ii and hI(q) ⌘ ;⇠i = hh⌘Q ,⇠Q ii. (2.99)

Then, the principal connection one-form of the mechanical connection HQ = V Q? is given by

Amech : TQ ! g, vq 7! I(q)�1J (vq), (2.100)

and it is easily veri�ed that kerAmech = V Q?. Moreover, the locked inertia tensor satis�es

hI
�
�g(q)

�
⇠ ;⌘i = hI(q)Adg�1 ⇠ ;Adg�1⌘i. (2.101)

for all g 2 G, q 2 Q, and ⇠, ⌘ 2 g. Finally, we may de�ne the local locked inertia tensor I(s) : g ! g⇤ in a
given trivialization  : S ⇥ G ! Q as I(s) = I �  (s, e). •

2.5.4 Horizontal Lifts

Perhaps the main role of a principal connection is that it can be used to identify data de�ned on the shape
space with horizontal data on the total space, as follows.

De�nition 2.39. Consider a principal bundle ⇡ : Q ! S with a designated principal connection HQ. We
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de�ne the following notions of horizontal lifts for data de�ned on S:

• the horizontal lift at q 2 ⇡�1
(s) of a tangent vector vs 2 TS, denoted (vs)

HQ
q , is the unique vector

hq 2 HqQ such that d⇡(hq) = vs,

• the horizontal lift of a vector �eld X 2 X(S) on the shape space, denoted XHQ 2 �(HQ) ✓ X(Q),
is the vector �eld given by the pointwise horizontal lifts of the “downstairs” vectors, i.e.,

XHQ
: Q ! HQ, q 7!

�
X � ⇡(q)

�
HQ

q
, (2.102)

• and the horizontal lift at q 2 ⇡�1
�
�(0)

�
of a smooth curve � : [0, 1] ! S, denoted �HQ

q : [0, 1] ! Q,
is the unique smooth curve such that

1. �HQ
q (0) = q,

2. ⇡ � �HQ
q = �, and

3. �̇HQ
q (t) 2 HQ for all t 2 [0, 1]. •
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CHAPTER 3

GEOMETRIC FLAT OUTPUTS OF
MECHANICAL SYSTEMS WITH SYMMETRY

The material in this chapter is based on the publication [15], co-authored with Matthew D. Kvalheim
and Vijay Kumar, as well as the non-archival report [16], co-authored with Vijay Kumar. The author
of this thesis led the development of the theoretical contributions, developed the computational tools,

and drafted the original manuscripts (in collaboration with his co-authors).

3.1 Introduction

An e�cient, e�ective approach to the control of mechanical systems is to synthesize the overall controller
via the composition of a low-rate “open-loop” planner (to select a reference trajectory) with a high-rate
“closed-loop” tracking controller (to drive the system towards the reference trajectory) [17]. Such layered
control architectures, often called “two degree of freedom” (2-DoF) designs, are found across an extremely
diverse array of engineered and biological systems, demonstrating the e�ectiveness of the paradigm [18].
Such a decomposition allows the lower-frequency planner to consider, or at least approximate, more com-
plex costs (e.g., energy e�ciency) and constraints (e.g., obstacle avoidance, actuator saturation) than can be
accomodated in the higher-frequency control layer. These methods are thus especially suitable for aerial
and space robots, given the computational limitations imposed by their stringent size, weight, and power
(“SWaP”) constraints. Indeed, although such a decomposition is traditionally imposed a priori as a design
choice, this layered architecture can also emerge naturally as a result of applying augmented Lagrangian
methods to optimal control problems [19].

In order for the resulting closed-loop control architecture to achieve satisfactory tracking performance, it
is desirable to ensure that the trajectory selected by the planning layer is “dynamically feasible”, meaning
that the system’s dynamics do not prohibit it from following the prescribed motion. Such concerns are par-
ticularly relevant for “underactuated” systems (i.e., those having less actuators than degrees of freedom)—
because an underactuated system cannot accelerate in arbitrary directions, not all smooth trajectories
through the con�guration manifold are dynamically feasible. For example, a quadrotor’s translational and
rotational dynamics are coupled, because the direction of thrust is �xed in the body frame, requiring the
vehicle to roll and pitch to achieve some desired translational motion. A wide range of algorithms for tra-
jectory planning are available to solve such problems (e.g., direct collocation [20], augmented Lagrangian
methods [19], etc.); however, many such approaches require substantial computational resources due to
the use of iterative numerical optimization to enforce the constraints imposed by the dynamics, which can
become intractable for mobile systems with limited payload.
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However, some control systems (including many common robotic systems) enjoy a powerful property
known as “di�erential �atness”, �rst introduced in [21], which can make dynamically feasible motion
planningmuch easier. A �at system enjoys a locally bijective correspondence between dynamically feasible
trajectories in the state space and arbitrary smooth curves in a so-called “�at space”. Thus, planning and
control problems can be solved e�ciently in the �at space (where smoothness, and perhaps curvature
bounds, are su�cient for dynamic feasibility), at which point the solution can be brought back to the
physical space for execution [22]. In fact, planning for a �at system “looks” a lot like planning for a
fully-actuated system, since arbitrary smooth curves are dynamically feasible, at least in the absence of
actuator constraints. Moreover, �at systems are controllable, and all controllable linear systems are �at
[23], although the same is not true of nonlinear systems.

3.1.1 Discovery of Flat Outputs

A central challenge in the broad application of �atness-based methods is the required knowledge of a so-
called “�at output” (i.e., the mapping to the �at space). Indeed, not all systems admit a �at output, nor are
�at outputs unique, and �nding a �at output for a given system (or even determining whether one exists) is
a challenging task [24], which is usually achieved bymanual trial and error on a case-by-case basis [25–27].
While necessary and su�cient conditions for �atness of underdetermined systems are known [28], they
are broadly speaking too general to be tractably applied to multibody robotic systems, whose equations of
motion grow rapidly in complexity as the number of bodies in the system increases, necessitating the use
of numerical algorithms to perform dynamics computations e�ciently [29].

In view of these analytical challenges, a number of computational methods have been developed with the
goal of identifying �at outputs from sampled data about the system. For example, the approach of [30]
involves generating a dataset of state and input trajectories and representing the candidate �at output
and the inverse �atness di�eomorphism as weighted sums of basis functions. However, the resulting
numerical �at output is only valid locally around the sampled trajectories, the basis functions chosen
seem to re�ect knowledge of an analytical �at output, and the approach becomes intractible for large
bases. The identi�cation of �at outputs from data in the complete absence of an analytical system model
was considered in [31], but similar locality limitations remained. Moreover, since �at outputs are not
unique, even with knowledge of a particular �at output (or a numerical approximation thereof), it is not
necessarily clear whether there exists a “better” choice (e.g., one for the system’s true actuation constraints
can be more closely approximated via tractable constraints in the �at space).

3.1.2 Flatness of Mechanical Systems

Despite these challenges, numerous mechanical systems are known to be di�erentially �at [32], and this
property has been exploited for e�ective planning and control of highly dynamic maneuvers for under-
actuated robots with limited computational budgets [25, 33, 34]. For example, a �atness-based controller
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Table 3.1: Partial Catalog of Mechanical Systems with Geometric Flat Outputs

System Q G S Bundle Ref.

Planar Rocket (Fig. 3.2) SE(2) R2 S1 Trivial [37]

Planar Aerial Manip. (Fig. 3.3) SE(2) ⇥ S1 SE(2) S1 Trivial [39]

Spatial Aerial Manipulator SE(3) ⇥ T2
SE(3) T2 Trivial [40]

Quadrotor (Fig. 3.4) SE(3) R3 ⇥ S1 S2 Nontrivial [41]

Quadrotor with Slung Load SE(3) ⇥ S2 R3 ⇥ S1 S2 ⇥ S2 Nontrivial [26]

Chain of n Spring-Mass Systems Rn R Rn�1 Trivial [42]

for a racing drone executing aggressive trajectories at the edge of the �ight envelope showed only a small
reduction in tracking performance as compared to a nonlinear model predictive controller; nonetheless,
it required roughly two orders of magnitude less computational power [35]. Similarly, adapting residual
dynamics learning to be compatible with di�erential �atness has reduced computational costs by orders of
magnitude while still achieving similar control performance to that of optimization-based methods [36].

Towards the goal of amore comprehensive understanding of �atness inmechanical systems, previouswork
has employed the Riemannian structure of the equations of motion of certain classes of mechanical systems
to obtain tractable conditions for �atness. For unconstrained systems with no more than one unactuated
degree of freedom, [37] gave a constructive necessary and su�cient condition to obtain a con�guration
�at output (i.e., a function of the con�guration alone and not the velocities, inputs, or higher derivatives).
Similar results were obtained in [38] for systems with more unactuated degrees of freedom, but a candidate
output was assumed to be given. However, the �at outputs obtained in both these methods relied on local
coordinates and thus are valid only in the neighborhood of some nominal operating point.

3.1.3 The Role of Symmetry

Mechanical systems often exhibit symmetry, meaning that the dynamics are (roughly speaking) equivalent
at all those states related by a certain element of a transformation group. Indeed, the classical result of
Noether’s Theorem [43] demonstrates that such symmetries explain the existence of conserved quantities
like linear momentum, angular momentum, and energy. Modern analyses show that when the transfor-
mation group’s action on the state space lacks �xed points, a principal bundle structure emerges on the
con�guration manifold [7, 8], ultimately providing a formalism for analysis of a diverse range of locomo-
tory phenomena, including swimming at low Reynolds numbers [14], the “falling cat problem” [44], and
the locomotion of nonholonomic robots [13,45], all of which can be described using a principal connection.

It has long been conjectured that such symmetries also have a role to play in di�erential �atness [32].
Indeed, in [46], the authors remark that for many mechanical systems,
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“... the di�erentially �at output is not an arbitrary combination of the con�guration
variables and velocities of the system, but rather consists of a set of points and angles,”

a phenomenon that the authors believed to be related to symmetry, although a clear connection was not
established. In [37], it was shown that any �at output of a very special class of symmetric systems must
have a related symmetry (i.e., its level sets must be invariant); however, symmetry was not leveraged
to construct the outputs, nor were such symmetries guaranteed for more general systems. Moreover,
although the symmetry properties of the mapping from the physical space to the �at space were explored,
the symmetry properties of the mapping from the �at space back to the physical space was not (which
need not enjoy the same properties in general). On the other hand, in [24], the notion of a symmetry-
preserving �at output was proposed, roughly requiring that the symmetry transformation be compatible
with the round-trip transformation between the physical and �at spaces, imposing equivariance conditions
involving both the mapping to the �at space and the inverse mapping back to physical space. While the
authors gave a �at output of an example system that enjoys such a property, the existence of a symmetry-
preserving �at output in general for a �at system with symmetry remained an open question.

In our own analysis of the literature on �atness, it has become clear that in fact, many known �at outputs of
mechanical systems can be seen to be the group variables of a trivialization of the principal bundle arising
from a symmetry of the system. This observation suggests that even many �at outputs obtained via ad
hoc analysis were somehow informed or in�uenced by symmetry, despite lacking a formal understanding
of this interplay. In Table 3.1, we give a partial catalog of such systems, along with their con�guration
manifold Q, symmetry group G, and shape space S. In a similar vein, [47] examined several locomotion
systems with group and shape spaces of equal dimension, showing “partial di�erential �atness” (a more
general yet signi�cantly weaker property) with respect to the group variables of a trivialization, although
none were found to be fully di�erentially �at. In fact, the potential relevance of principal bundle geometry
to �atness �rst occurred to us after considering how [41] used trivializations of the Hopf �bration (an
S1-bundle over S2) to parametrize a quadrotor’s attitude quaternion in S3.

3.1.4 Overview and Contributions

The above discussion suggests a rich interplay between �atness and symmetry in mechanical systems. In
view of these observations, this chapter is guided by two related (but distinct) overarching questions:

Can we exploit symmetry to develop a more systematic method
for the construction of a �at output of a given mechanical system?

When can we ensure that any �at output ultimately obtained by
such a procedure is, in an appropriate sense, symmetry-preserving?

While both questions pertain to the role of symmetry, the former seeks to develop systematic tools that
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obviate ad hoc or bespoke approaches, while the latter concerns the construction of particularly “good”
�at outputs (i.e., those that respect the symmetry), since in general, �at outputs are not unique.

Towards these broader goals and informed by Table 3.1, we explore, in particular, when a mechanical
system with an appropriate symmetry admits a trivialization of its principal bundle in which the group
variables are a �at output of the system. We call this a geometric �at output, underscoring the connection
with geometric mechanics [7]. In particular, such geometric �at outputs have several favorable properties:

1. They are con�guration �at outputs [37], making it convenient to write constraints on positions,
velocities and inputs in terms of �at output derivatives [34].

2. They are equivariant maps from the con�guration manifold to the �at space, re�ecting a consistency
with the symmetry of the physical system.

3. They are often global or almost global, meaning they are well-de�ned over all or almost all of the
con�guration manifold, capturing more completely the system’s performance envelope.

Our work in this chapter will consist of formal mathematical results and analytical worked examples, as
well as somewhat less formal computational methods, which demonstrate preliminary progress towards
operationalizing the more formal insights.

In what follows, we begin with some mathematical preliminaries that will make the particular theoretical
goals of the chapter more precise. After setting the stage by considering the symmetries of the set of
dynamically feasible trajectories, we analyze the dynamic feasibility constraints of a mechanical system
in a trivialization of the principal bundle arising from its symmetry. Using this structure, we ultimately
present a su�cient condition for the construction of a geometric �at output of a mechanical system with
“broken” symmetry (wherein the kinetic energy, but perhaps not the potential energy, is invariant, a setting
similar to that of [37]). Moreover, we show that this �at output will in fact be symmetry-preserving when
the symmetry of the system is slightly stronger (i.e., when the potential forces are also invariant). This
condition amounts to a mild regularity criterion as well as the existence of a section of the bundle that is
orthogonal to a certain computable distribution, from which we immediately construct the geometric �at
output. Analytical worked examples demonstrate the approach for several concrete robotic systems.

Given the centrality of this so-called “orthogonal section” in our condition for �at output construction, the
focus of the latter half of the chapter is the development of an approach for the discovery of the same, which
we achieve through amixture of geometric and computational methods. Applying our computational tools
to two of the analytical worked examples from earlier in the chapter ultimately shows precise numerical
agreement with the known closed-form solutions, providing evidence that the method can correctly re-
cover numerical approximations of the true �at outputs. We also discuss the implications of a nontrivial
bundle structure in regards to prohibiting the existence of truly global geometric �at outputs. Ultimately,
the results in this chapter have broad applications in the control of an important class of multibody robotic
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systems, including many vehicles and manipulators operating in air or space environments.

3.2 Mathematical Preliminaries

We now establish a mathematical context in which we can state the goals of this chapter more formally in
regards to the relationship between �atness and symmetry in mechanical systems.

3.2.1 Mechanical Systems

In this chapter (and beyond), we will be concerned with the following class of systems. Note that in this
thesis, we do not explicitly consider mechanical systems subject to nonholonomic constraints or intermit-
tent contact with the environment.

De�nition 3.1. A mechanical system ⌃ = (Q,, P, F ) consists of:

1. a smooth manifold Q (called the con�guration manifold),

2. a Riemannian metric  on Q (called the kinetic energy metric),

3. a smooth function P : Q ! R (called the potential energy), and

4. a smooth codistribution F ✓ T ⇤Q (called the control codistribution).

The system is fully actuated if F = T ⇤Q; otherwise, it is underactuated. Moreover, the equations of motion
(or dynamics) are given by the forced Euler-Lagrange equations:

rq̇ q̇ + grad P (q) = ]
(fq), fq 2 Fq, (3.1)

where fq 2 Fq is the control input, q 2 Q is the con�guration, and (q, q̇) 2 TQ is the state. •

Remark 3.1. We present the equations of motion in this geometric form because it will allow us to more
conveniently exploit their Riemannian structure. However, (3.1) is analogous to other representations
that may be more familiar to some readers. For example, a mechanical system described by the so-called
“manipulator equations”

M(q) v̇ + C(q, v) v + g(q) = B(q)u (3.2)

can also be expressed in the form (3.1), where the kinetic energy metric is given by (v, w) = vTM(q)w,
the Coriolis forces C(q, v) v arise directly from the kinetic energy, the gravity term g(q) corresponds
to the di�erential dP (q) of the potential energy, and the control codistribution Fq at each point q 2 Q

corresponds to the column space of B(q). Moreover, in local coordinates (q1, . . . , qn
), the dynamics (3.1)

can be expressed as

q̈i
+ �

i

jk
q̇j q̇k

+ ij
@P

@qj
= ijfj , (3.3)
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where ijij = �ij , and �i

jk
are the Christo�el symbols. A thorough and informative exploration of the

connections between the Riemannian perspective (3.1) seen more commonly in geometric control, the
manipulator equations (3.2) seen more commonly in robotics, and the local form (3.3) can be found in [48].

It is clear that for an underactuated mechanical system, not all forces fq are available at each con�gu-
ration q. Thus, not all smooth curves in the con�guration manifold lift to solutions of (3.1), introducing
constraints thatmust be consideredwhen planning trajectories. We formalize this consideration as follows.

De�nition 3.2. The set of dynamically feasible smooth curves in the con�guration manifold is given by

DF(⌃) =
n

q 2 C1
(R, Q) : [

�
rq̇ q̇ + grad P (q)

�
2 Fq

o
. (3.4)

A curve t 7! q(t) is said to be dynamically feasible if q 2 DF(⌃). •

3.2.2 Di�erential Flatness

We now brie�y formalize the notion of di�erentially �at control systems. For more detailed, general, and
formal presentations of di�erential �atness, we refer the reader to [49] and [50].

De�nition 3.3. A control system ẋ = f(x, u)with state x 2 X and input u 2 U is said to be di�erentially
�at (or simply �at) if there exists a (perhaps non-unique) �at output

y = ⇤(x, u, u̇, ü, . . . , u(↵)
) (3.5)

such that the state and inputs are can be (locally) recovered via �nitely many derivatives of the output:

(x, u) = ⇤�1
(y, ẏ, ÿ, . . . , y(�)), (3.6)

morally speaking inverting this mapping. •

The abuse of notation ⇤�1 is motivated by the fact that �at systems enjoy a one-to-one correspondence
(at least locally) between smooth state-input trajectories of the system and arbitrary smooth curves in the
�at output space, as illustrated by the following diagram:

�
ẋ = f(x, u)

 
C1

(R, Y )

⇤

⇤
�1

(3.7)

where the left-hand set is understood as a subset of C1
(R, X)⇥C1

(R, U), and by abuse of notation, we
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de�ne overloads of ⇤ and ⇤�1 for curves x 2 C1
(R, X), u 2 C1

(R, U), and y 2 C1
(R, Y ) given by

⇤(x, u) =
⇣
t 7! ⇤

�
x(t), u(t), u̇(t), . . . , u(↵)

(t)
�⌘

, (3.8)

⇤
�1

(y) =
⇣
t 7! ⇤

�1
�
y(t), ẏ(t), . . . , y(�)(t)

�⌘
. (3.9)

Boundary conditions for the original system can be mapped via the �at output to the �at space. Thus,
given knowledge of a �at output, the dynamically feasible trajectory planning problem can be solved in
the �at space, at which point the solution can be mapped to the state-input space.

Remark 3.2. Every fully-actuated system is di�erentially �at with respect to a �at output given by the
system’s con�guration, namely,

⇤ : (q, q̇) 7! q, (3.10)

since for any smooth curve q in Q, we may reconstruct the state x = (q, q̇) in TQ and input fq in Fq via

⇤
�1

: (q, q̇, q̈) 7!
⇣
q, q̇,[

�
rq̇ q̇ + grad P (q)

�⌘
. (3.11)

This observation motivates the de�nition of a con�guration �at output [37], namely a �at output of a
mechanical system (fully-actuated or not) that depends solely on the system’s con�guration, y = ⇤(q).

3.2.3 Symmetry and Dynamic Feasibility

Since we seek to explore connections between �atness and symmetry in mechanical systems, we must
formalize the notion of symmetry in mechanical systems. In fact, we are interested in several di�erent
�avors of symmetry of increasing strength, since it is common for the symmetry of physical systems to be
“broken” by ambient forces (e.g., gravity).

De�nition 3.4. Consider a mechanical system ⌃ = (Q,, P, F ). An action � : G ⇥ Q ! Q is called:

1. a symmetry of ⌃ if , P , and F are �-invariant,

2. a dynamic symmetry of ⌃ if , dP , and F are �-invariant (but perhaps P is not), and

3. a broken symmetry of ⌃ if  and F are �-invariant (but perhaps P and dP are not). •

Since the �-invariance of P is a su�cient (but not necessary) condition for the �-invariance of dP , it
should be clear that any symmetry is, in particular, a dynamic symmetry, and any dynamic symmetry
is, in particular, a broken symmetry. While the strongest form of symmetry above is required to obtain
conserved quantities (in the absence of external forcing) via Noether’s Theorem, the two more general
cases are common for robotic systems operating under the e�ects of gravity. Furthermore, a given action
� of G on Q induces an action on C1

(R, Q) that maps any curve t 7! q(t) to the curve t 7!
�
�g � q

�
(t).
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Thus, we may examine the symmetry of DF(⌃), motivating the weaker notion of dynamic symmetry.

Proposition 3.1. Suppose� is a dynamic symmetry of a mechanical system⌃. Then, DF(⌃) is�-invariant.

Proof. It will su�ce to show that for any curve � 2 DF(⌃), we have �g � � 2 DF(⌃). By [9, Thm. 5.70],
the �-invariance of  implies that for all X, Y 2 X(Q) and g 2 G, we have

r(d�
g�1 �X ��g)(d�g�1 � Y � �g) = d�g�1 �

�
rXY

�
� �g. (3.12)

A consequence of the previous fact is that for any admissible path � 2 A(q) and any Z 2 X(�), we have

r(�g � �)0(d�g � Z) = d�g �
�
r�̇Z

�
(3.13)

where we note that �g � � 2 A(Q) and d�g � Z 2 X(�g � �), while r(�g � �)0 : X(�g � �) ! X(�g � �)
is simply covariant di�erentiation along the given curve. With this in mind, we compute:

[
�
r(�g �q)0(�g � q)0 + grad P (�g � q)

�
= [ � d�g

�
rq̇ q̇

�
+ dP � �g � q (3.14)

= d�
⇤
g�1 � [

�
rq̇ q̇ + grad P (q)

�
. (3.15)

Thus, the claim follows directly from the �-invariance of F . ⌅

It is readily seen that for any mechanical system ⌃, every smooth state-input trajectory satisfying (3.1)
projects to exactly one smooth curve in the con�guration manifold. Thus, a �at output establishes the
following one-to-one correspondence (at least locally):

DF(⌃)

C1
(R, Y )

⇤ ⇤
�1 (3.16)

where by mild abuse of notation we let ⇤ act directly on dynamically feasible curves in the con�guration
manifold (and not the state-input space), so that any curve q 2 DF(⌃) has a corresponding �at space
representative ⇤(q).

Suppose also that � is a dynamic symmetry of ⌃. Then, by Prop. 3.1, the dynamically feasible curve
�g � q has as its �at space representative the curve ⇤(�g � q). A natural question thus asks whether these
�at space curves are also related by a group action. Although [24] formulated a more general notion of
symmetry preservation and �atness, we give a more speci�c de�nition suitable for the present setting.

De�nition 3.5. Consider a mechanical system ⌃ with a dynamic symmetry � : G ⇥ Q ! Q and a �at
output ⇤ with �at space Y . We say that ⇤ is symmetry-preserving if, for some action on the �at space
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 : G ⇥ Y ! Y and all g 2 G, the following diagram commutes:

DF(⌃) DF(⌃)

C1
(R, Y ) C1

(R, Y )

⇤

�g

⇤
�1

 g

⇤ ⇤
�1 (3.17)

In otherwords, themaps to and from the �at space (from and to the physical space) are both equivariant. •

3.3 Constructing Symmetry-Preserving Flat Outputs

In this section, we present the main formal results of this chapter, giving a su�cient condition for the
construction of a �at output of a mechanical system with broken symmetry. In the case that the symmetry
is, in particular, a dynamic symmetry, the �at output we obtain will also be symmetry-preserving.

3.3.1 Dynamic Feasibility in a Local Trivialization

We begin by expressing the dynamic feasibility constraints of a mechanical system⌃with respect to a local
trivialization of its con�guration manifold. Consider a principal bundle ⇡ : Q ! (S := Q/G) induced by
a free and proper action � : G ⇥ Q ! Q (e.g., a broken symmetry of ⌃), and �x any arbitrary choice of:

1. a local trivialization  : U ⇥ G ! ⇡�1
(U), where  �1

(q) =
�
⇡(q),'(q)

�
,

2. a basis of vector �elds {Z↵ : ↵ = 1, . . . , dimS} for TU , and

3. a basis {ea : a = 1, . . . , dimG} for g.

Consider expressing the velocities of smooth curves t 7! s(t) in U and t 7! g(t) in G as3

ṡ(t) = �↵
(t)Z↵

�
s(t)

�
, ġ(t) = dLg(t)

�
⇠a
(t) ea

�
, (3.18)

where �↵ and ⇠a are smooth scalar functions depending only on time. Then, we may express the velocity
of the corresponding curve q : t 7!  

�
s(t), g(t)

�
in ⇡�1

(U) as

q̇ = d (ṡ, ġ) = d 
�
�↵Z↵(s), dLg(⇠

a
ea)

�
(3.19)

= �↵
d g � Z↵(s) + ⇠a

d s � dLg(ea) (3.20)

= �↵
�
d '(q) � Z↵ � ⇡(q)| {z }

=:H↵(q)

�
+ ⇠a

�
d ⇡(q) � dL'(q)(ea)| {z }

=:Va(q)

�
. (3.21)

3We use index notation and the Einstein summation convention. For clarity, we use indices a, b, c for G and ↵,�, � for S.
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Thus, the previous calculations motivate us to de�ne a standard basis of vector �elds for TQ
��
U
(relative

to the three choices �xed above) given by {H↵} [ {Va}. In particular, {Va} can be seen to be a basis of
vector �elds for the vertical subbundle V Q

��
U
, while {H↵} is a basis of vector �elds for the “canonical �at

connection”4 induced by the trivialization  , given by HQ
��
U
:= d G

(TU). Moreover, it is easily veri�ed
that eachH↵ and Va is a�-invariant vector �eld (i.e.,H↵ = d�g � H↵ � �g�1 and Va = d�g � Va � �g�1 ).

Using such a basis, we prove the following technical lemma, which will ultimately prove very convenient.

Lemma 3.1 (Implicit Dynamics in a Local Trivialization). Let the free and proper action � : G ⇥ Q ! Q

be a broken symmetry of a mechanical system ⌃ = (Q,, P, F ), where dimG = rankF . For the principal
bundle ⇡ : Q ! (S = Q/G), let  : U ⇥ G ! ⇡�1

(U) be a local trivialization, let {X�} be a local basis of
vector �elds for coannF de�ned over ⇡�1

(U), and let {Va} [ {H↵} be a standard basis. De�ne the map

E :
�
s, g, �, ⇠, �̇, ⇠̇

�
7! (3.22)

hhX� ,
�
⇠̇aVa + �̇↵H↵ + ⇠a⇠brVa

Vb + ⇠a��
(rVa

H� + rH�
Va) + �↵��rH↵

H� + grad P
�
ii �  (s, g).

Then, a curve q : t 7!  
�
s(t), g(t)

�
belongs to DF(⌃) if and only if t 7! E

�
s(t), g(t), �(t), ⇠(t), �̇(t), ⇠̇(t)

�

vanishes identically, where the curves t 7! �↵
(t) and t 7! ⇠a

(t) are de�ned such that q̇ = �↵ H↵ + ⇠a Va.

Proof. Relying on the basic properties of a�ne connections and covariant di�erentiation described in Def-
initions 2.7 and 2.10, and following reasoning similar to that of [51], we may express the geometric accel-
eration of any such curve as

rq̇ q̇ = ⇠̇aVa + �̇↵H↵ + ⇠a⇠brVa
Vb + ⇠a��

(rVa
H� + rH�

Va) + �↵��rH↵
H� . (3.23)

Furthermore, a given curve q : R ! Q is dynamically feasible if and only if

hhX(q) ,rq̇ q̇ + gradP (q)ii = 0 for all X 2 �(coannF ), (3.24)

since the previous amounts to a projection of the forced Euler-Lagrange equations onto the unactuated
subbundle, which eliminates the external control forces since hhX ,]

(fq)ii = hfq ;Xi = 0. Furthermore,
due to the bilinearity of the metric, (3.24) holds if and only if it holds for each X� in the basis. Thus, we
may locally express the dynamic feasibility constraint (3.24) in the form

hhX� , ⇠̇aVa + �̇↵H↵ + ⇠a⇠brVa
Vb + ⇠a��

(rVa
H� + rH�

Va) + �↵��rH↵
H� + grad P ii = 0. (3.25)

Combining the previous equation with the given local trivialization completes the argument. ⌅

4The canonical �at connection is only well-de�ned over the trivialization itself. Thus, on a nontrivial bundle, it cannot be
extended to a globally-de�ned principal connection. Since we will work only within a trivialization, this su�ces.
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3.3.2 The Underactuation Distribution

The following distribution, analogous to those studied in [37] and [38], will feature prominently in our
su�cient condition for �atness. In fact, it can be easily computed directly from the system model.

De�nition 3.6. The underactuation distribution of a mechanical system ⌃ = (Q,, P, F ) is given by

�(⌃) = span
�
X, rY X : X 2 �(coannF ), Y 2 �(TQ)

 
, (3.26)

where �(coannF ) is the set of all vector �elds annihilated by the control codistribution F . •

It’s worth noting that for any mechanical system ⌃ = (Q,, P, F ), we have

dimQ � rankF  rank�(⌃)  dimQ, (3.27)

since coannF ✓ �(⌃). Within this range, the particular value of rank�(⌃) is determined by how the
distribution of “unactuated velocities” (i.e., coannF ) interacts with the kinetic energy metric  (i.e., via
the Riemannian connection r) in (3.26). Also, when a distribution analogous to�(⌃)was de�ned in [37],
the authors also made an observation analogous to the following (cf. [37, Lemma 4.1]).

Proposition 3.2. Let � be a broken symmetry of a mechanical system ⌃. Then,�(⌃) is �-invariant.

Proof. Following the same line of reasoning as [37], the claim follows from the invariance of F and thus
of its coannihilator, as well as the fact that r corresponds to a �-invariant metric (and thus covariant
derivatives of invariant vector �elds are invariant). ⌅

We will often simply write�when the system ⌃ is clear from context. It is also worth mentioning how to
compute � in practice. Thanks to the linearity properties of the covariant derivative, it is readily shown
that for any bases of vector �elds coannF = span{Ui} and TQ = span{Xj},

� = span
�
Ui, rXj

Ui : i = 1, . . . , (dimQ � rankF ), j = 1, . . . , dimQ
 
. (3.28)

Thus, we need only compute �nitely many covariant derivatives to obtain a basis of vector �elds for �,
which can be done explicitly directly from the data provided to de�ne any mechanical system ⌃. Later, we
will compute � for several concrete systems (see Examples 3.1-3.3).

3.3.3 Main Result

We are now ready to state this chapter’s main result on �atness and symmetry.

Theorem 3.1 (Main Result). Let the free and proper action � : G ⇥ Q ! Q be a broken symmetry of a
mechanical system ⌃ = (Q,, P, F ), where dimG = rankF . Let � : U ! Q be a section of the principal
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bundle ⇡ : Q ! (S := Q/G), and de�ne the map E as in Lemma 3.1 for the trivialization  � : (s, g) 7!
�g � �(s) and a �-invariant basis {X�} for coannF . Suppose the following conditions hold:

1. Orthogonality: � is orthogonal to the image of � as submanifold of Q.

2. Regularity: The partial di�erential @sE is full rank at generic points in E�1
(0).

Then, the group component of the trivialization  � is a con�guration �at output of ⌃, given by

⇤ : T
�
⇡�1

(U)
�

! G, vq 7! pr2 � �1
� (q). (3.29)

Moreover, if � is a dynamic symmetry of ⌃, then ⇤ is symmetry-preserving.

Remark 3.3. Theorem 3.1 is depicted visually in Fig. 3.1, with particular emphasis on the orthogonality
condition. In fact, the regularity condition is relatively mild, and in practice the orthogonality condition is
the harder one to satisfy. Moreover, singularities are permitted; we only forbid their occurence at generic
points (e.g., singularities are allowed over a closed set of measure zero, which happens often in examples),
since �atness pertains to generic trajectories. Note that such singularities do not correspond to points
q 2 Q but rather tuples (q, q̇, q̈), or more formally, points in a second-order jet space [37].

Remark 3.4. The previous result does not require us to assume dynamic (vs. broken) symmetry to obtain
a geometric �at output; however, this stronger assumption will ensure that the �at output obtained is
symmetry-preserving. In fact, for the weaker result, the assumption of broken symmetry can be relaxed
to the weaker requirement that [

(�) ✓ T ⇤Q is a �-invariant codistribution, but we do not pursue
the details here. Moreover, although this result bears similarities to the results of [37], a key distinction
(besides the less-local formulation) is the exploration of symmetry preservation in regards to both ⇤ and
⇤
�1, whereas [37] considered only the invariance of the level sets of the con�guration �at output.

Proof of Theorem 3.1. As mentioned above, HQ
��
U
:= d G

(TU) de�nes a horizontal subbundle (i.e., a
principal connection) over the trivialization, spanned by {H↵}. Moreover, HQ is �-invariant and, in
particular, lies tangent to the image of �. Thus, it follows from Proposition 3.2 that HQ ? � everywhere
throughout ⇡�1

(U) ✓ Q (and not merely along the image of �). We will use this observation to express
the dynamic feasibility condition obtained in Lemma 3.1 in a simpli�ed form.

In particular, from the fact that HQ ? � and the de�nition of�, it is clear that for all Y 2 X(Q), we have

hhX� ,H↵ ii = 0, hhrY X� ,H↵ ii = 0. (3.30)

Moreover, since r is the Riemannian connection (and hence is compatible with the metric), we also have

hhX� ,rY H↵ ii = rY hhX� ,H↵ ii � hhrY X� ,H↵ ii = 0. (3.31)
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� ✓ TQ
underactuation distribution
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bundle projection

�g : Q ! Q
group action

q
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� � �

y : Q ! G
geometric flat output

g

y

Figure 3.1: An illustration of Theorem 3.1, in which the section �, depicted via a thick red line, is orthogonal
to the distribution�, depicted via black arrows. Under additional (relatively mild) assumptions, the group
variables of the corresponding trivialization will be a geometric �at output of the system. Moreover, if the
symmetry in question is a dynamic symmetry, the �at outputs obtained will be symmetry-preserving.

Next, expanding the output of the dynamic feasibility constraint (3.22) using the bilinearity of the metric
will show that all terms depending on � and �̇ are linear in one of the quantities shown to be zero in (3.30)
and (3.31). Eliminating these vanishing terms, we obtain the simpli�ed dynamic feasibility constraint

hhX� , ⇠̇aVa + ⇠a⇠brVa
Vb + grad P ii �  (s, g) = 0, (3.32)

that is, a constraint of the form
C
�
s, (g, ⇠, ⇠̇)

�
= 0, (3.33)

where C : S ⇥ (G ⇥ g ⇥ g) ! RdimS and ⇠ = ⇠a
ea. Thanks to the regularity assumption on @sE, the

implicit function theorem applies at generic points in C�1
(0), and it follows from continuity that we may

locally solve for s in terms of g, ⇠, and ⇠̇. Moreover, ⇠ = dLg�1(ġ), and di�erentiating this relationship to
obtain ⇠̇ thus allows us to express the shape in terms of g, ġ, and g̈, and thus reconstruct the con�guration
q using the trivialization  � . Di�erentiating again to obtain the velocity q̇ and then also computing the
geometric acceleration rq̇ q̇ will ultimately yield the inputs fq via the equations of motion. Thus, in the
canonical trivialization  � , the group variables constitute a geometric �at output of the system.

Since the group component of any local trivialization is an equivariant map, it is clear that⇤ is equivariant.
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Assuming now that� is (in particular) a dynamic symmetry of⌃ (so that dP is an invariant covector �eld),
it remains to show that the map ⇤�1 is equivariant.

Since ( �)s : g 7!  �(s, g) is equivariant with respect to Lg and �g and the �atness di�eomorphism was
constructed from solutions of (3.33), or more explicitly (3.32), for s, it will su�ce to show that the quantity
on the left-hand side of (3.32) is invariant to transformations of the �at output trajectory. Namely, for any
curve t 7! g(t), let  h(g) be the curve t 7! Lg

�
h(t)

�
. Then, for any h 2 G, we de�ne the transformed

curve g0 = ( hg) : t 7! Lh

�
g(t)

�
and compute

⇠0 = dL(hg)�1

�
dLh(ġ)

�
= dLg�1 � dLh�1 � dLh(ġ) = dLg�1(ġ) = ⇠, (3.34)

thus also, ⇠̇0 = ⇠̇. Moreover, since X� , Va, and Vb are all �-invariant vector �elds, it will su�ce to note
that grad P is also �-invariant (since  and dP are �-invariant). In particular, we may compute

hhX� , ⇠̇aVa+⇠
a⇠brVa

Vb + grad P ii �  �

�
s,Lh(g)

�

= hhX� � �h , ⇠̇aVa � �h + ⇠a⇠b
(rVa

Vb) � �h + grad P � �h ii �  �(s, g) (3.35)

= hh d�h � X� , ⇠̇a
d�h � Va + ⇠a⇠b

d�h � (rVa
Vb) + d�h � grad P ii �  �(s, g) (3.36)

= hhX� , ⇠̇aVa + ⇠a⇠brVa
Vb + grad P ii �  �(s, g), (3.37)

completing the argument. ⌅

3.4 Analytical Examples

In this section, we apply the main result to several illustrative examples (see Figs. 3.2-3.4), demonstrating
the abstract results on concrete systems. In some cases, we systematically obtain �at outputs already
reported in the literature after discovery via ad hoc methods; in other cases, we discover new �at outputs.

3.4.1 The Planar Rocket

Example 3.1 (Planar Rocket, Fig. 3.2). Also known as the ducted fan [32], this classic example of a �at
system has con�guration manifold Q = SE(2), to which we assign coordinates (x1, x2, ✓) corresponding
to the center of mass position and the angle of body rotation, so that

q =

2

64
cos ✓ � sin ✓ x1

sin ✓ cos ✓ x2

0 0 1

3

75 . (3.38)

The corresponding bases of vector and covector �elds induced by this coordinate system are denoted

TQ = span
�
@x1 , @x2 , @✓

 
, T ⇤Q = span

�
dx1, dx2, d✓

 
. (3.39)
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Figure 3.2: Planar Rocket
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Figure 3.3: Planar Aerial Manipulator
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Figure 3.4: Quadrotor

The kinetic energy metric is given by

 = m (dx1 ⌦ dx1 + dx2 ⌦ dx2) + J (d✓ ⌦ d✓), (3.40)

a basis of vector �elds for the control codistribution is given by

F = span
�
cos ✓ dx1 + sin ✓ dx2 + r d✓, � sin ✓ dx1 + cos ✓ dx2

 
, (3.41)

and the potential energy is given by P : (x1, x2, ✓) 7! mgx2. Thus, dP = mg dx2.

It’s easily veri�ed that the action of (g1, g2) 2 R2 given (in local coordinates) by

� : R2 ⇥ SE(2) ! SE(2),
�
(g1, g2), (x1, x2, ✓)

�
7! (x1 + g1, x2 + g2, ✓). (3.42)

is a dynamic symmetry of the system. This action induces a principal bundle structure over S1, where the
projection map is given (again in coordinates) by

⇡ : SE(2) ! S1, (x1, x2, ✓) 7! ✓. (3.43)

We may compute
coannF = span

�
� r cos ✓ @x1 � r sin ✓ @x2 + @✓

 
, (3.44)

and a local coordinate calculation will show that

� = span
�

� r cos ✓ @x1 � r sin ✓ @x2 + @✓, r sin @x1 � r cos @x2

 
, (3.45)

whose orthogonal complement with respect to  is given by

�
?
= span

�
J cos ✓ @x1 + J sin ✓ @x2 + mr @✓

 
. (3.46)

Because we have rank�?
= dimS = 1 and G is Abelian, by integration it is relatively straightforward

52



to obtain the global section

� : S1 ! SE(2), ✓ 7!

2

64
cos ✓ � sin ✓ J

m r
sin ✓

sin ✓ cos ✓ � J

m r
cos ✓

0 0 1

3

75 , (3.47)

whose image can easily be veri�ed to be orthogonal to � using the metric. Moreover, a local coordinate
calculation (whose details we omit) can be used to show that the regularity condition holds as well. Thus,
by Theorem 3.1, the group variables in the canonical trivialization identi�ed with �, given by

y : SE(2) ! R2, q 7! (x1 � J

m r
sin ✓, x2 +

J

m r
cos ✓), (3.48)

are a �at output of the system, namely the coordinates of the point o shown in Fig. 3.2, known as the center
of oscillation, in agreement with [37].

Moreover, since � was a dynamic symmetry, the �at output obtained is symmetry-preserving. Thus,
for any generic smooth curve in the �at space R2, �nding the corresponding curve in the con�guration
manifold and then transforming the result using � would yield the same result as translating the original
curve in the �at space and then �nding the corresponding curve in the con�guration manifold. •

3.4.2 The Planar Aerial Manipulator

Example 3.2 (Planar Aerial Manipulator, Fig. 3.3). This system consists of two planar rigid bodies con-
nected by a revolute joint. The con�guration manifold isQ = SE(2) ⇥ S1, to which we assign coordinates
q = (x1, x2, ✓,�) such that (x1, x2, ✓) describe the end e�ector pose in SE(2) (in the same manner as in
the previous example) while � 2 S1 is the joint angle. In the given coordinates, the kinetic energy metric
can be expressed in matrix form as

h
ij

i
=

2

66664

0 0 0 0

0 0 0 0

0 0 Jg + Jq Jq

0 0 Jq 0

3

77775
+ mg

2

66664

1 0
`g
2 sin ✓ 0

0 1 � `g
2 cos ✓ 0

`g
2 sin ✓ � `g

2 cos ✓ `g
2

4 0

0 0 0 0

3

77775
+ (3.49)

mq

2

66664

1 0 `q sin(�+ ✓) + `g sin ✓ `q sin(�+ ✓)

0 1 �`g cos ✓ � lq cos(�+ ✓) �`q cos(�+ ✓)

`q sin(�+ ✓) + `g sin ✓ �lq cos(�+ ✓) � `g cos ✓ 2 `g`q cos�+ `q2 + `g2 `q2 + `g`q cos�

`q sin(�+ ✓) �`q cos(�+ ✓) `q2 + `g`q cos� `q2

3

77775
,

while the potential energy is given (in coordinates) by

P : SE(2)⇥ S1 ! R, (x1, x2, ✓,�) 7! mgg
�
x2 � `g

2 sin ✓
�
+mqg

�
x2 � `g sin ✓� `q sin(�+ ✓)

�
. (3.50)
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Relative to the basis of covector �elds { dx1, dx2, d✓, d� }, the control codistribution is given by

F = span

8
>>>><

>>>>:

2

66664

cos(�+ ✓)

sin(�+ ✓)

�`g sin�
0

3

77775
,

2

66664

0

0

1

1

3

77775
,

2

66664

0

0

0

1

3

77775

9
>>>>=

>>>>;

, (3.51)

so that relative to the basis of vector �elds { @x1 , @x2 , @✓, @� }, we have

coannF = span

8
>>>><

>>>>:

2

66664

� sin(�+ ✓)

cos(�+ ✓)

0

0

3

77775

9
>>>>=

>>>>;

. (3.52)

The system exhibits broken symmetrywith respect to displacements in the plane described (in coordinates)
as the action of (g1, g2, g3) 2 SE(2) on Q given by

� :

0

BBBB@

0

B@
g1

g2

g3

1

CA
,

0

BBBB@

x1

x2

✓

�

1

CCCCA

1

CCCCA
7!

0

BBBB@

x1 cos g3 � x2 sin g3 + g1

x1 sin g3 + x2 cos g3 + g2

✓ + g3

�

1

CCCCA
, (3.53)

inducing a principal bundle structure over S1, for which the projection map is given (in coordinates) by

⇡ : SE(2) ⇥ S1 ! S1, (x1, x2, ✓,�) 7! �. (3.54)

A straightforward but slightly tedious local coordinate calculation (best performed with the aid of a sym-
bolic manipulation toolbox) will reveal that

� = span

8
>>>><

>>>>:

2

66664

� sin(�+ ✓)

cos(�+ ✓)

0

0

3

77775
,

2

66664

� cos(�+ ✓)

� sin(�+ ✓)

0

0

3

77775

9
>>>>=

>>>>;

= span
�
@x1 , @x2

 
, (3.55)

whose orthogonal complement with respect to the metric  can be computed as

�
?
= span

8
>>>><

>>>>:

2

66664

�`g (mg + 2mq) sin ✓ � 2 `q mq sin(�+ ✓)

`g (mg + 2mq) cos ✓ + 2 `q mq cos(�+ ✓)

2mg + mq

0

3

77775
,

2

66664

�`q mq sin(�+ ✓)

`q mq cos(�+ ✓)

0

mg + mq

3

77775

9
>>>>=

>>>>;

. (3.56)
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Considering the second entry in the previous basis,� is clearly orthogonal to the image of a global section
that can be expressed in local coordinates as

� : S1 ! SE(2) ⇥ S1, � 7!
⇣�

`qmq

mg+mq

�
cos�,

�
`qmq

mg+mq

�
sin�, 0, �

⌘
, (3.57)

since d� clearly takes values in �?, and the regularity condition can also be veri�ed via local coordinate
calculations. Thus, the group variables of the canonical trivialization are a global geometric �at output:

y : SE(2) ⇥ S1 ! SE(2),

(x1, x2, ✓,�) 7!
⇣
x1 �

�
`q mq

mg+mq

�
cos(�+ ✓), x2 �

�
`q mq

mg+mq

�
sin(�+ ✓), ✓

⌘
.

(3.58)

In harmony with the results presented in [40], this output amounts to the pose of the end e�ector if
`q = 0; otherwise, it is the pose of a frame parallel to the end e�ector frame, translated by an o�set due
to the eccentricity of the vehicle center of mass. However, � was only a broken (vs. dynamic) symmetry.
While the map from the con�guration manifold to the �at space is equivariant, the mapping from the �at
space back to the state-input space is not. This corresponds to the fact that the gravity direction in the
end e�ector frame is altered by �, and thus thrust must be generated in a di�erent direction (requiring a
di�erent joint angle �) to follow the same end e�ector trajectory. •

3.4.3 The Quadrotor

Example 3.3 (Quadrotor, Fig. 3.4). The con�guration manifold is Q = SE(3), which can be expressed in
so-called “homogeneous coordinates” as

q =

"
R x

01⇥3 1

#
(3.59)

where R 2 SO(3) is the rotation from the body frame to the world frame and x 2 R3 is the position of the
center of mass. Relative to the usual basis of vector �elds for TSE(3), corresponding to the components
of the linear and angular velocities along body-�xed axes, the system is given by5

 = diag(m, m, m, Jxx, Jxx, Jzz), (3.60a)

P : (x, R) 7! mg(e3
Tx), (3.60b)

5Assuming the rotational inertia is symmetric about the thrust axis gives the system broken symmetry for the Abelian group
action given, as opposed to considering a non-Abelian subgroup of SE(3). However, the �at outputs obtained are valid even
without this assumption due to Remark 3.4.
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F = span

8
>>>>>>>>><

>>>>>>>>>:

2

6666666664

0

0

kf

kf `a

0

km

3

7777777775

,

2

6666666664

0

0

kf

0

kf `a

�km

3

7777777775

,

2

6666666664

0

0

kf

�kf `a

0

km

3

7777777775

,

2

6666666664

0

0

kf

0

�kf `a

�km

3

7777777775

9
>>>>>>>>>=

>>>>>>>>>;

(3.60c)

where kf and km are the thrust and moment coe�cients of the propellers and `a is the arm length.

The system exhibits dynamic symmetry with respect to the action of R3 ⇥ S1 described by

� :
�
(g123, g4), (x, R)

�
7!

0

B@x + g123, R

2

64
cos g4 � sin g4 0

sin g4 cos g4 0

0 0 1

3

75

1

CA , (3.61)

comprised of a translation in all three world-�xed axes and a rotation around the body-�xed thrust axis.
This induces a nontrivial principal bundle over S2, where the projection map is given by

⇡ : SE(3) ! S2, (x, R) 7! R e3. (3.62)

Moreover, it is easily veri�ed that

coannF = span

8
>>>>>>>>><

>>>>>>>>>:

2

6666666664

1

0

0

0

0

0

3

7777777775

,

2

6666666664

0

1

0

0

0

0

3

7777777775

9
>>>>>>>>>=

>>>>>>>>>;

, (3.63)

corresponding to the body-frame directions perpendicular to the direction of the propellers. Also, a
straightforward calculation will reveal that

� = span

8
>>>>>>>>><

>>>>>>>>>:

2

6666666664

1

0

0

0

0

0

3

7777777775

,

2

6666666664

0

1

0

0

0

0

3

7777777775

,

2

6666666664

0

0

1

0

0

0

3

7777777775

9
>>>>>>>>>=

>>>>>>>>>;

, and thus �
?
= span

8
>>>>>>>>><

>>>>>>>>>:

2

6666666664

0

0

0

1

0

0

3

7777777775

,

2

6666666664

0

0

0

0

1

0

3

7777777775

,

2

6666666664

0

0

0

0

0

1

3

7777777775

9
>>>>>>>>>=

>>>>>>>>>;

, (3.64)

since the inertia tensor is diagonal.
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This principal bundle is nontrivial, so global sections do not exist. However, removing even a single �ber
⇡�1

(s0) for any s0 2 S2 yields a trivial bundle. Thus, we de�ne two almost global sections: one de�ned
on the “north” portion of the sphere (removing only the “south pole”), given by

�N : S2 \ { �e3 } ! SE(3),

2

64
s1

s2

s3

3

75 7!

2

66664

1 � s1
2

s3+1
�s1s2
s3+1 s1 0

�s1s2
s3+1 1 � s2

2

s3+1 s2 0

�s1 �s2 s3 0

0 0 0 1

3

77775
, (3.65)

and another de�ned on the “south” portion of the sphere (removing only the “north pole”), given by

�S : S2 \ { e3 } ! SE(3),

2

64
s1

s2

s3

3

75 7!

2

66664

1 +
s1

2

s3�1
�s1s2
s3�1 s1 0

s1s2
s3�1 �1 � s2

2

s3�1 s2 0

s1 �s2 s3 0

0 0 0 1

3

77775
. (3.66)

While these sections were derived from the quaternion calculations in [41], the expression (3.65) also ap-
pears in [52]. Moreover, � is orthogonal to the image of each section, since � spans the linear velocities,
while only the rotational degrees of freedom vary along the sections, and the inertia matrix is block diag-
onal. The regularity condition can also be shown to hold using various local coordinate calculations, and
thus the group variables of the canonical local trivialization for each local section are almost global geo-
metric �at outputs, corresponding to the center of mass position and a so-called “body-�xed yaw angle”
around the thrust axis, equivalent to the �at outputs proposed in [41]. Moreover, since � was a dynamic
symmetry, these �at outputs are symmetry-preserving. •

3.5 Flat Output Construction via Optimization

In Theorem 3.1, we formulated a relatively general su�cient condition for the construction of a geomet-
ric �at output; with an additional assumption, we also guaranteed that this output would be symmetry-
preserving. While this theorem made several stipulations (most being relatively mild), it is undeniable
that the greatest hurdle in applying this result is the assumed knowledge of a section that is orthogonal
to �. The examples analyzed in Sec. 3.4 show that we may often discover such a section in closed form
(and indeed, many known �at outputs in the literature actually correspond directly to this situation), but
a systematic means of discovering such a section (if one exists) is not known in the general case. More-
over, when rank� < dimG, such orthogonal sections are not necessarily unique, raising questions of
optimality. Thus, towards the goal of applying this chapter’s main result broadly, it is urgent to develop a
systematic method for obtaining such “orthogonal sections”, and we now pursue this objective.

For notational convenience, in the remainder of this section we assume that we work in a trivial bundle
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Q ⇠= S ⇥ G (i.e., U = S), since of course, one can always restrict a given system on a nontrivial bundle
to this local domain. Assuming all other conditions of Theorem 3.1 hold, we are essentially left with the
constraint satisfaction problem

�nd � 2 �(Q) (3.67a)

s. t. � ? �(S) (3.67b)

where �(Q) is the set of all sections � : S ! Q of ⇡ : Q ! S and (3.67b) enforces that� is orthogonal to
the image of � (as a submanifold of Q).

Remark 3.5. It is clear that if rank� > dimG, the problem (3.67a)-(3.67b) is infeasible, since satisfy-
ing (3.67b) requires that dimS + rank�  dimQ. Moreover, if rank� = dimG, a necessary (but
not su�cient) condition for the feasibility of (3.67a)-(3.67b) is that coannF be involutive (i.e., for all
X, Y 2 �(coannF ), we have [X ,Y ] 2 coannF ). The previous claim is a direct consequence of the Frobe-
nius theorem, while the su�ciency gap pertains partly to the global topological structure of S, since even
a “�at” principal connection may have nontrivial “holonomy” (see [7, Fig. 3.14.2]) when S is not simply
connected. It is less clear to us what precisely can be said about the feasibility of (3.67a)-(3.67b) in the case
that rank� < dimG.

To obtain (at least approximate) solutions to this problem, we take inspiration from [53], which consid-
ered the problem of identifying the trivialization in which approximate, linear algorithms for planning
connection-driven locomotion are most accurate (referred to as “optimal coordinates”, or more pedanti-
cally, an optimal trivialization). Since trivializations and sections are in one-to-one correspondence, this
problem bears signi�cant similarity to the task at hand. In what follows, we use the tools of Riemannian
geometry and di�erential forms to cast the contraint satisfaction problem (3.67a)-(3.67b) as a continuum
optimization problem over the space of sections. Next, inspired by [53], we re-express the problem to
optimize the “transition map” from an “initial guess” trivialization to a trivialization that minimizes the
cost functional. Finally, using �nite element methods similar to those employed in [53] and other approxi-
mations, we will ultimately obtain an approximate transcription of this continuum problem to a quadratic
program (QP). Solving this QP numerically for two example systems obtains a solution in very close agree-
ment with the closed-form �at outputs obtained above.

3.5.1 The Continuum Problem

We begin by formulating a continuum optimization problem, whose solution is also a solution to the
constraint satisfaction problem (3.67a)-(3.67b), which will be expressed as follows:

min
� 2�(Q)

J(�) (3.68a)

s. t. C(�) = 0 (3.68b)
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where the cost and constraint functionals J, C : �(Q) ! R will be constructed below, and the constraint
functional will simply enforce (3.67b). Since in general we may have rank� < dimG, solutions to (3.67a)-
(3.67b) may not be unique, even up to the group action. We therefore propose an additional cost J(�),
which penalizes the deviation of the �nal �at output from the “minimum perturbation coordinates” of the
system [54], a trivialization which approximates, e.g., an “angular center of mass” when G = SO(3) [55].
This cost will thus encourage the selection of a geometric �at output whose variation most completely
captures the entire system’s combined momentum, which seems convenient for motion planning.

Formulating the Cost Functional

We �rst recall (from Example 2.13) that since Q is equipped with a G-invariant metric , we may de�ne
a mechanical connection one-form Amech : TQ ! g, such that V Q?

= kerAmech. Using this and the
locked inertia tensor I(q) : g ! g⇤, we de�ne an R-valued bilinear form on Q given by

⇢A : (uq, vq) 7! hI(q)Amech(uq);Amech(vq)i, (3.69)

which is clearly symmetric and positive semide�nite. Examining the pullback of ⇢A by �, given by

�?⇢A : (us, vs) 7! hI(q)Amech � d�(us);Amech � d�(vs)i, (3.70)

we see that �?⇢A is also a positive semide�nite symmetric bilinear form, but this time on S. Moreover,
�?⇢A will be identically zero over S if and only if kerAmech is tangent to the image of �. Such a situation
can occur only if the mechanical connection is �at (i.e., integrable in the Frobenius sense) [56] and can
be completely integrated to yield a trivialization that amounts to “coordinates” with no “perturbation”
whatsoever. Moreover, nontrivial principal bundles over a simply connected shape space do not admit �at
principal connections, and thus the existence of �at connections is intimately linked to the topological
structure of the principal bundle induced by the symmetry.

We also note that a G-invariant metric  on Q induces a natural metric on S = Q/G given by

̌ : (us, vs) 7! hh(us)
V Q

?
q ,(vs)

V Q
?

q ii
���
q 2 ⇡�1(s)

, (3.71)

independent of the particular choice of q, where (·)V Q
?

q : TsS ! TqQ is the horizontal lift via the me-
chanical connection (i.e., the orthogonal complement of the vertical subbundle). Recall that the trace of a
symmetric bilinear form ! on S is given by

�
tr!

�
(s) =

X

k

!(vs
k, vs

k
) (3.72)

for any orthonormal basis TsS = span{vs
1, . . . , vs

n}. Thus, the trace of a positive semide�nite form is a
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non-negative function which vanishes exactly at those points where the form itself vanishes, and so ! will
vanish identically over S if and only if the integral of tr! over S vanishes.

Therefore, we de�ne the cost functional

J : �(Q) ! R, � 7!
Z

S

tr(�?⇢A) vol̌, (3.73)

where vol̌ is the Riemannian volume form (see [6, Prop. 6.4]), which provides an intrinsic notion of the
integral of a real-valued function on a Riemannian manifold.

Finally, although here we consider minimum perturbation coordinates for the mechanical connection, the
foregoing analysis is valid for any other principal connection, including the canonical �at connection
induced by another trivialization. Such a choice could penalize (in a di�erential sense) the deviation of
any geometric �at output obtained relative to, e.g., some particular body-�xed frame.

Formulating the Constraint Functional

In the original constraint satisfaction problem, the orthogonality constraint (3.67b) must be enforced point-
wise over all of �(S) ⇢ Q. The problem will be much more amenable to practical solution if we re-express
this constraint using a real-valued constraint functional that vanishes exactly when the constraint holds.

To this end, we de�ne a bilinear form

⇢� : (uq, vq) 7! hhproj�(uq) ,proj�(vq)ii, (3.74)

where proj� : TQ ! TQ is the orthogonal projection onto �. ⇢� is clearly symmetric and positive
semide�nite, and

� ? �(S) if and only if �?⇢� = 0. (3.75)

Thus, following a line of reasoning similar to that employed in formulating the cost functional, we enforce
the orthogonality constraint using the constraint functional

C : �(Q) ! R, � 7!
Z

S

tr(�?⇢�) vol̌, (3.76)

such that (3.67b) holds if and only if C(�) = 0 i.e. (3.77b) holds.

Resulting Continuum Problem

In summary, we obtain the continuum optimization problem

min
� 2�(Q)

Z

S

tr(�?⇢A) vol̌ (3.77a)
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s. t.
Z

S

tr(�?⇢�) vol̌ = 0 (3.77b)

where the cost functional (3.77a) penalizes “momentum perturbation” in the sense described above, while
the constraint functional (3.77b) enforces that � ? �(S).

3.5.2 Local Form of the Continuum Problem

For an optimization problem over the space of sections, there is no intrinsic “origin” designated for the
decision variables. However, relative to a �xed trivialization  : S ⇥ G ! Q, any section can be written

� : S ! Q, s 7!  
�
s,�(s)

�
, (3.78)

were� : S ! G is called the transitionmap from to the trivialization � : (s, g) 7! �g � �(s). It will ulti-
mately bemore convenient to optimize�, therebyworking relative to an “initial guess” section s 7!  (s, e).
Thus, without loss of generality, we reformulate the cost and constraint functionals accordingly.

Reformulating the Cost Functional

In view of the previous, the integrand in the cost function (3.73) can also be given more explicitly by

tr(�?⇢A)(s) =
X

k

h I(s)
�
dL

�1
�(s)(d�) + Amech

�
(vs

k
) ;

�
dL

�1
�(s)(d�) + Amech

�
(vs

k
) i, (3.79)

which follows directly from (3.78), as well as (2.101) describing the symmetry properties of the locked
inertia tensor and Fact 2.98 relating the connection form Amech and the local form Amech.

Reformulating the Orthogonality Constraint

We now consider the local computation of the integrand in the constraint functional (3.76). Let � =

span{�1, . . . ,�k} de�ne a local basis of vector�elds for� that is both orthonormal (i.e., hh�i ,�j ii = �ij)
and �-invariant. We then have

proj�(vq) =

X

i

hh�i(q) ,vq ii�i(q), (3.80)

and moreover,

⇢�(uq, vq) =

X

i

hhuq ,�i(q)ii hh�i(q) ,vq ii. (3.81)

Since �i is �-invariant, there exist maps ⌘i : S ! g and vector �elds Zi : S ! TS such that

�i �  (s, g) = d 
�
Zi(s), dLg � ⌘i(s)

�
. (3.82)
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Using this symmetry, following [46] we may also express the metric product in the form

hhuq ,vq ii = hh d (us, ug) , d (vs, vg)ii (3.83)

=

"
us

dL
�1
g (ug)

#T "
m(s) Amech(s)TI(s)

I(s)Amech(s) I(s)

#"
vs

dL
�1
g (vg)

#
, (3.84)

With this fact in mind, a straightforward computation will show that

tr(�?⇢�)(s) =
X

k

X

i

"
vs

k

dL
�1
�(s) � d�(vs

k
)

#T
Pi(s)

T Pi(s)

"
vs

k

dL
�1
�(s) � d�(vs

k
)

#
, (3.85)

where we de�ne

Pi(s) =

"
Zi(s)

⌘i(s)

#T "
m(s) Amech(s)TI(s)

I(s)Amech(s) I(s)

#
. (3.86)

3.5.3 Gauge Freedom

Finally, to study the symmetry of the proposed cost and constraint functionals, consider transforming a
given section � by letting �0 : s 7! �g � �(s) for some g 2 G. From (3.78), we have

�0(s) = �g �  
�
s,�(s)

�
=  

�
s,Lg � �
| {z }
=:�0

(s)
�
. (3.87)

Noting that the cost functional as expressed in (3.79) and the constraint functional as expressed in (3.85)
depend on � (and indirectly, �) only via the map dL�(s) � d�. Thus, we compute

dL�0(s) � d�0 = dL
�1
Lg ��(s) � d(Lg � �) = dL

�1
�(s) � dL

�1
g � dLg � d� = dL�(s) � d�. (3.88)

Therefore, J and C are invariant, showing that if � is a solution to the problem (3.77a)-(3.67b), so is
�g � � for all g 2 G. Thus, either the addition of a symmetry-breaking cost or constraint can resolve this
ambiguity, or this gauge freedom can be freely adjusted after solving the problem once, without re-solving.

3.6 Finite Element Methods

We have already formulated the problem in the continuum and re-expressed it relative to an initial guess.
However, to solve the problem using numerical methods, it is necessary to transcribe our abstract opti-
mization problem to a �nite dimension. Inspired by [53], we parameterize the candidate section via (3.78)
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using a transition map of the form

� : s 7! exp

⇣X

i

wi⇣i(s)
⌘
, (3.89)

where each wi 2 R is a weight to be optimized and ⇣i : S ! g is a basis function corresponding to a
multivariate polynomial spline over a hypercube mesh (see [53] for a similar formulation with piecewise
linear elements and a simplex mesh). Basis functions with high-order continuity are desirable (e.g., two
derivatives are necessary to express the group component of the system’s acceleration). We note that
Hermite polynomial basis functions withC2 smoothness have been given in up to at least three dimensions
[57], but may be available in higher dimensions as well. Since dimS = dimQ � rankF (and rankF is
usually only slightly less than dimQ), we are concerned with low-dimensional cases, an advantage of
approximating the section � : S ! Q instead of the �at output y : Q ! G directly.

3.6.1 Numerical Approximations

We now introduce several approximations made in the transcription of the continuum problem.

First Order Approximation of the Exponential Map

For g ✓ gl(n), we make the approximation exp ⇠ ⇡ e + ⇠ for small ⇠ 2 g (which is exact precisely when
G is Abelian), so that �(s) ⇡ e + wi⇣i(s) where the sum is implied, and moreover,

dL
�1
�(s) � d�s(vs) ⇡

�
e � wi⇣i(s)

��
wi

d⇣i(vs)
�

⇡ wi
d⇣i(vs). (3.90)

The cost functional integrand (3.79) is thus approximated by

tr(�?⇢A)(s) ⇡
X

k

hI(s)
�
wh

d⇣h + Amech

�
(vs

k
);
�
wj

d⇣j + Amech

�
(vs

k
)i, (3.91)

and similarly for the constraint functional integrand (3.85),

tr(�?⇢�)(s) ⇡
X

k

X

i

"
vs

k

wh
d⇣h(vs

k
)

#T
Pi(s)

T Pi(s)

"
vs

k

wj
d⇣j(vs

k
)

#
. (3.92)

Gaussian Quadrature Approximation of the Integrals

We employ Gaussian quadrature [58] to approximate the integrals in the functionals. Considering coordi-
nates (s1, . . . , sn

) on each element of S =
S

m

j=1 Ej where Ej are �nitely many disjoint elements,

Z

S

f(s) vol̌ =

mX

j=1

Z

Ej

⇣
f(s)

q
det ̌(s)

⌘
ds1. . . dsn ⇡

mX

j=1

pX

i=1

cij

⇣
f(sij)

q
det ̌(sij)

⌘
, (3.93)
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where each cij 2 R and sij 2 S is a predetermined optimal weight and sampling point respectively, and
̌(s) is the induced Riemannian metric ̌ in the coordinates si. Since Gaussian quadrature with p sam-
ples is exact when the integrand is a polynomial of degree 2p � 1 or less, we expect this to be a good
approximation if our mesh is su�ciently �ne and ⇣i is a polynomial of degree p or less in si.

Approximate Transcription to a Quadratic Program

It is clear that pointwise over S, both (3.91) and (3.92) are quadratic forms in the weights wi. Since quadra-
ture approximates integrals via a weighted sum, our �nal approximations of (3.73) and (3.76) can be ex-
pressed in the form

J(�) ⇡ 1
2w

iAijw
j
+ biw

i
+ c, (3.94)

C(�) ⇡ 1
2w

iDijw
j
+ eiw

i
+ f = 0, (3.95)

where Aij and Dij are positive semide�nite. Due to transcription, (3.95) may be infeasible even if a ge-
ometric �at output exists in the continuum. However, because (3.95) is nonnegative in view of (3.92),
we relax the orthogonality constraint to simply enforce minimization of C(�) instead via the constraint
Dijwj

+ ei = 0, where minimization to zero (when feasible) corresponds to exact constraint satisfaction.

Thus, we obtain an approximate transcription of the continuum problem (3.77a)-(3.77b) to a QP:

min
w2RN

1
2w

iAijw
j
+ biw

i
+ c (momentum perturbation cost) (3.96a)

s. t. Dijw
j
+ ei =0 (orthogonality constraint) (3.96b)

wi⇣i(s0) = log(g0) (breaks symmetry) (3.96c)

where (3.96c) is added to resolve the gauge freedom. The QP is sparse due to the choice of basis functions
with local support, permitting e�cient solution even for very �ne meshes.

3.6.2 Numerical Results

We implement the proposedmethod to identify geometric �at outputs on two example systems, namely the
Planar Rocket (see Example 3.1) on SE(2) (an R2 bundle over S1) and the Planar Aerial Manipulator(see
Example 3.2) on SE(2)⇥ S1 (an SE(2) bundle over S1). In both examples, we employ C2 basis functions
corresponding to quintic Hermite splines over an evenly divided mesh on S1 with m = 8 elements, and
perform Gaussian quadrature with p = 6 sample points per element. The orthogonal section obtained
for the Planar Rocket is visualized in Fig. 3.5, meanwhile the geometric �at output ultimately obtained
is visualized in Fig. 3.6 for the Planar Aerial Manipulator. With suitable (and easily chosen) gauge free-
dom constraints, the numerical geometric �at outputs identi�ed for both systems show precise numerical
agreement with the closed form geometric �at outputs previously given in Section 3.4.
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Figure 3.5: For the Planar Rocket in Example 3.2, we depict the �nite element boundaries (i.e., the knot
points of the quintic spline) and the restriction of� to �(S1) ⇢ SE(2), which can be seen to be orthogonal
to the solution � : S1 ! SE(2) to (3.96a)-(3.96c). To speak more precisely, we actually plot [

(�) ⇢ T ⇤Q,
and vectors and covectors appearing at right angles corresponds to orthogonality.
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Figure 3.6: Visualization of the numerical geometric �at output obtained for the Planar Aerial Manipulator
in Example 3.2. The �at output amounts to a frame parallel to the end e�ector with a �-dependent o�set.
When `q = 0, the o�set goes to zero. Physical parameters have been chosen to exaggerate the o�set for
clarity. The frame in red corresponds to the angle � visualized above.
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3.7 Discussion

The existence of �at outputs that are the group variables of a particular trivialization echoes the thematic
conclusions of [53], namely that although the dynamics of a mechanical systemwith symmetry can be rep-
resented equivalently in any trivialization, certain trivializations can be particularly favorable for analysis
and e�cient control design. Furthermore, viewing �at outputs through the geometric lens of trivializa-
tions suggests at least a partial answer to the open question as to why �at outputs often consist of a simple
“set of points and angles” [32], as opposed to arbitrarily messy functions.

Moreover, as mentioned above, it is common to approximate sensor and actuator saturation constraints
via convex constraints on the �at output derivatives [25] or via nonlinear constraints composed with the
mapping from the �at space to the state-input space [34]. We believe that the computational e�ectiveness
and convenience of such methods can, at least in part, be attributed to the use of a symmetry-preserving
�at output, since constraint approximations can thus be chosen to be equally accurate at every point along
each orbit with respect to a dynamic symmetry.

3.7.1 Generality and Extensions

Because our approach considers �at outputs taking values in an arbitrary Lie group (instead of limiting
ourselves to Rn), we are able to obtain globally-de�ned �at outputs when a global section is used. This is
highly advantageous for agile systems like aerial robots, which stray far from a nominal operating point
on the con�guration manifold. When the bundle is nontrivial, global sections do not exist, providing an
upper bound on the domain of geometric �at outputs. However, as explored in Example 3.3, the approach
provides a principled means of generating a global atlas of overlapping local �at outputs generated from
local sections, yielding a di�erentially �at hybrid system [26] and (in principle) enabling planning and con-
trol over the entire con�guration manifold. While [41] leveraged such ideas to design a tracking controller
for quadrotors performing aggressive inverted �ight, in [59] we explored the application of the geomet-
ric �at outputs corresponding to (3.65)-(3.66) for global planning of dynamically feasible trajectories for
quadrotors capable of reversing their propellers to exert bidirectional thrust.

The condition of Theorem 3.1 is only a su�cient condition (but not, in fact, necessary); in the future, we
hope to close this gap, which we believe to be occupied by systems whose state and inputs depend on
�at output derivatives of higher order [26], such as the last two entries of Table 3.1. Perhaps a recursive
approach, in which the shape space is regarded as yet another bundle, could encompass those systems as
well. Moreover, the dynamics of nonholonomic systems can also be described using an a�ne connection
[60], suggesting the possibility of extension to systems with velocity constraints. Additionally, although
our theoretical results concerned onlymechanical systemswithout dissipation, recentwork [36] has shown
that knowledge of a �at output of a nominal model can sometimes be “bootstrapped” to construct the
�atness mappings for a perturbed system (e.g., a quadrotor subject to aerodynamic disturbances, as in [61]).
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Finally, much remains unknown about the existence of symmetry-preserving �at outputs of mechanical
systems in general, since we considered only the case where dimG = rankF (although we note that any
subgroup of a given symmetry induces a symmetry of lower dimension).

3.7.2 Maturation of the Numerical Methods

Overall, the implementation of the numerical methods in this chapter can rightfully be considered prelim-
inary, and more general and robust tools should be developed to operationalize the method. For example,
the linearization of the exponential map is almost surely themost egregious approximation in Section 3.6.1.
It would thus be bene�cial to develop an iterative approach, similar to Sequential Quadratic Programming
(SQP) methods, where at each iteration, the exponential map is linearized about the current guess until
convergence. Since this process happens o�ine, the computational requirements should not be an obsta-
cle. Moreover, our numerical methods did not explore actually computing the mappings from the �at space
back to the state-input space (as in, e.g., [30] and [36]), and instead merely focused on �nding (a numerical
approximation of) a �at output, suggesting a clear direction for additional exploration.

In order to apply the approach to more complex systems, it would also be bene�cial to explore computing
the relevant quantities (e.g., the underactuation distribution � and the mechanical connection Amech)
numerically from a standard modeling format for robotic systems (e.g., a URDF [62]). Moreover, adapting
e�cient multibody dynamics solvers (e.g., Pinocchio [63]) to use a suitable factorization of the Coriolis
forces [64] would enable the e�cient computation of covariant derivatives [48]. Such methods would
permit the application of �atness-based planning and control techniques to complex multibody systems
for which symbolic analysis is tedious or intractable.

More broadly, we are also interested in exploring the extent to which the relaxed orthogonality constraint
that simply minimizes C(�)may yield an “approximate �at output” when a truly orthogonal section does
not exist (even in the continuum setting), but our current theory cannot accomodate such notions. Lastly,
it should be noted that our approach amounts to a continuous deformation of an existing section; thus, a
potential pitfall is that in general, all sections of a principal bundle need not be homotopic, although over
a contractible shape space (e.g., a local region), all sections are homotopic.

3.8 Conclusion

In this work, we formally de�ne and explore the concept of geometric �at outputs for robotic systems
evolving on principal bundles. Under mild regularity assumptions, we use the (perhaps broken) symmetry
of the system to construct a �at output from any section of the system’s principal bundle that is orthogonal
to an easily-computed distribution. These con�guration �at outputs are equivariant (as maps from Q to
G) and often global or almost global, and when the symmetry is su�ciently strong, the �at output is
also symmetry-preserving, meaning the mapping from the �at space back to the physical space is also
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equivariant. Similar to classic results in locomotion on principal bundles, a principal connection plays a
key role; however, our connection is �at6, whereas other locomotory phenomena result from curvature.

A central challenge of leveraging the previous results is the need to discover a so-called “orthogonal sec-
tion”. To tackle this challenge, we used the tools of Riemannian geometry and di�erential forms to cast
the search for such a section as an optimization problem. An approximate transcription of this continuum
formulation to a quadratic program was performed, and its solutions for two example systems showed
precise agreement with the known closed-form �at outputs, providing evidence in favor of the method’s
feasibility for accurate identi�cation of geometric �at outputs for more complex systems, for which closed
form solutions are not known.

Overall, the results o�er new fundamental insights into the dynamics of the broad class of mechanical
systems without external constraints, including such free-�ying systems as aerial and space robots. Most
importantly, our approach enables the application of �atness-based planning and control approaches to
new robotic systems by facilitating the discovery of �at outputs with strong, useful properties. The results
combine geometric methods and numerical tools to ultimately point towards a systematic, automated
approach to numerically identify geometric �at outputs directly from the systemmodel, particularly useful
when complexity renders pen and paper analysis intractable.

6It’s worth commenting on the coincidence of nomenclature between a “�at” distribution (integrable in the Frobenius sense),
and a “�at” system (integrable in the sense of equivalence to a “trivial” system [65]). This nomenclative correspondence is
thematically �tting but indirect, since we refer to two di�erent notions of integrability.
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CHAPTER 4

DYNAMICALLY FEASIBLE TASK SPACE PLANNING
FOR UNDERACTUATED AERIAL MANIPULATORS

The material in this chapter is based on the publication [40], co-authored with James Paulos and Vijay
Kumar, as well as the publication [27], co-authored with Vijay Kumar. The author of this thesis developed
the theory and simulations and drafted the original manuscript (in collaboration with his co-authors).

4.1 Introduction

In Chapter 3, we developed methods for constructing �at outputs of mechanical systems by exploiting
symmetry in the kinetic energy metric, while also ensuring that the �atness transformations preserved
this symmetry when the potential forces were also invariant. Such symmetry-aware �at outputs can be
leveragedwithin a trajectory planning scheme to plan trajectories that respect the underactuated dynamics
of the system, as in [25,66]. However, while we gave some illustrative examples and an incomplete catalog
of systems which enjoy such geometric �at outputs, certain robotics systems may not �t neatly within the
setting of the previous results. Two main limitations are clear:

1. Our formal results considered those systems whose con�guration manifold is acted upon by sym-
metry group of dimension equal to the number of control inputs. Thus, for robotic systems in 3D
space, these results will primarily be applicable to systems with six or less actuators, where the
symmetry group will usually be a subgroup of SE(3), although extensions could be achieved by
preconditioning the system with a feedback transformation that induces a larger symmetry group.

2. Flatness-based schemes for dynamically feasible trajectory planning typically specify (or optimize)
the desired trajectory in the �at space. For many problems, this is a convenient representation,
especially when the �at outputs have physical meaning (e.g., the position of the system center of
mass), as is common in the symmetry-aware setting. However, the �at outputs may not always
correspond to the task of interest (see [67] for some discussion). In such settings, other tools are
needed to synthesize trajectories which achieve the desired task while retaining dynamic feasibility.

In this chapter, we consider a class of systems that faces both these di�culties: the class of underactuated
aerial manipulators, consisting of an underactuated vehicle (i.e., a quadrotor), equipped with a manipulator
arm with an arbitrary number of revolute joints. An obvious task for such a system is to achieve some
desired motion of its end e�ector, in order to interact physically with its surroundings. Despite the spe-
cial aerial manipulator geometries considered in Example 3.2 as well as [68], and [27], in general, the end
e�ector’s pose cannot be expressed as a function of the �at outputs alone (i.e., without derivatives), neces-
sitating other methods for planning trajectories which both kinematically achieve a desired end e�ector
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motion and satisfy the system’s underactuated dynamics.

The investigation in this chapter is less mathematically rigorous (lacking theorems or formal proofs) than
the rest of this thesis. Rather, the aim of this chapter is for the reader to gain familiarity with a domain in
robotics where planning algorithms can be aided by the more abstract contributions of the prior chapter,
while also better understanding the limitations of those methods, and how they can be extended to tackle
other kinds of problems.

4.1.1 Trends in Aerial Manipulation

Aerial manipulation seeks to combine the dexterity, precision, and robustness of manipulator arms with
the unbounded workspace and terrain independence of aerial vehicles. Over the last decade, there have
been many exciting advances in both theory and experimental practice [69]. Teams of robots with body-
�xed grippers have performed cooperative assembly tasks [70], and a quadrotor with a planar 2-DOF arm
has been shown to transport small objects [71]. Many early examples of aerial manipulators leveraged
underactuated vehicles such as quadrotors and had arms of only a few joints, but did not fully account for
the dynamic coupling of the arm and the vehicle, limiting performance and precision. Recently, there has
been a greater prevalence of systems employing:

• fully-actuated vehicle platforms, enabling independent translation and rotation of the vehicle thanks
to its ability to exert arbitrary forces and torques [72–74], or

• highly redundant manipulator arms, able to correct error as the slow, imprecise vehicle tracks a
(perhaps dynamically infeasible) reference trajectory [75–77], in the spirit of a “macro-micro” ma-
nipulator [78].

However, such capabilities come at a price. Due to the physical limits of aerial vehicles, thrust is precious; to
spend it supporting the weight of additional components makes it unavailable for dynamic maneuvers and
reduces the endurance of the platform. The result is sluggish systems that strain to carry heavy actuators
they may not need to complete the task.

4.1.2 Minimalist Aerial Manipulator Morphologies

In view of these characteristics, it is clear that lightweight underactuated vehicles with minimally jointed
arms will outperform their redundant counterparts in terms of cost, endurance, and agility; the question
is whether they can remain competitive in terms of dexterity and precision. We argue that the appar-
ent shortcomings of underactuated aerial manipulators, in particular the tradeo� between precision and
dynamic capabilities, can be largely resolved by planning trajectories which kinematically achieve the de-
sired end e�ector motion while also satisfying the system’s underactuated dynamics. This is especially
vital when engaging in aggressive maneuvers or high-precision tasks, where dynamic feasibility is crucial
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to ensure accurate tracking. For example, in [79], an aerial manipulator spray painting line art could only
perform the task with acceptable quality under quasi-static conditions.

Methods to plan dynamically feasible manipulation trajectories for simpli�ed special cases have been
demonstrated. A quadrotor with a body-�xed gripper was shown to grasp moving objects in simulation
using manually-designed dynamically feasible trajectories, but only for constant velocity targets [80]. A
planar aerial manipulator with one joint moving at high speeds was shown to grasp stationary objects [39],
and a theoretical extension to planar systems with more joints has also been developed [68]. However, in
addition to the planar restriction, both of these works required that the system have speci�c geometry
that can be di�cult to realize in hardware, namely that the arm be attached at the vehicle center of mass.
Likewise, our prior work demonstrated dynamically feasible planning of the end e�ector pose trajectory
in SE(3) for a quadrotor with a 2-joint arm, but again only for manipulators with special geometry for
which the system center of mass is static as viewed in the end e�ector reference frame [27].

4.1.3 Overview and Contributions

In this work, we show that all aerial manipulators consisting of an underactuated vehicle and an artic-
ulated arm are di�erentially �at systems, such that we may minimally describe the space of permissible
trajectories in terms of su�ciently smooth trajectories for the �at outputs. We then formulate and solve
the dynamically feasible inverse kinematics problem, determining which �at output trajectories will ex-
actly produce a desired trajectory for the end e�ector, despite the system’s underactuation and kinematic
redundancy. Using these results, we present two classes of aerial manipulators possessing key properties
bene�cial for trajectory planning. Finally, in simulation, we show the applicability of the method to a
broad domain of problems requiring precision and dynamic performance.

4.2 Mathematical Preliminaries

The class of systems in question is shown in Fig. 4.1, meant to represent a quadrotor equipped with a
manipulator arm of arbitrary number of joints and geometry, including those with n = 0 or n = 1 joints.

4.2.1 System De�nition

We model the vehicle and each link of the arm as a rigid body, specifying the con�guration and velocities
of the system as

q =
�
x, R, ✓

�
2 R3 ⇥ SO(3) ⇥ Tn, v =

�
ẋ,⌦, ✓̇

�
2 R6+n. (4.1)

The chosen con�guration variables are the global position x 2 R3 of the center of mass of the entire system
(including the arm), the rotation R 2 SO(3) from the vehicle frame to the world frame, and the tuple of
joint angles ✓ = (✓1, . . . , ✓n) 2 Tn, where ✓i 2 S1. For the velocities, ẋ 2 R3 is the center of mass velocity,
⌦ 2 R3 is the body-frame angular velocity of the vehicle, and ✓̇ 2 Rn is the vector of joint velocities. The
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Figure 4.1: Schematic of a generic underactuated aerial manipulator, consisting of an underactuated aerial
vehicle (i.e., a quadrotor) equipped with an arbitrary n-joint articulated arm and an end e�ector.

system has inputs u = (f,m, t) 2 R4+n, where f 2 R is the magnitude of net rotor thrust, �xed in the e3
direction in the vehicle frame, m 2 R3 is the net moment vector on the vehicle due to the rotors (in the
body frame), and t 2 Rn is the tuple of applied joint torques. Appealing to the Lie group structure of the
con�guration manifold, we write the kinematics of the system as q̇ = qv̂, or in expanded explicit form as

d
dt

x = ẋ, d
dt

R = R ⌦̂, d
dt
✓ = ✓̇. (4.2)

where the notation ·̂ is the overloaded hat map from Euclidean coordinates to the appropriate Lie algebra.

4.2.2 Dynamic Modeling

Consider the position xi and orientation Ri of each rigid body in the system relative to the world frame
W , where i 2 {0, . . . , n} and R0 is simply R. We remark that each body’s global position and orientation
may be expressed as

xi(q) = x + Rpi(✓), Ri(q) = RQi(✓), (4.3)

where x is the system center of mass position, pi(✓) is the displacement vector from the center of mass
to body i expressed in the vehicle frame, and Qi(✓) gives the rotation from body i to the vehicle frame.
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Figure 4.2: Using the system center of mass instead of the vehicle position in the con�guration variables
puts the equations of motion into an explicitly cascaded form, familiar from the dynamics of a quadrotor.

Forward kinematics in this form may be derived by �rst following standard recursive methods using the
vehicle position x0, then expressing the system center of mass as the weighted sum

x =
1
m
(m0x0 + m1x1 + . . . + mnxn), (4.4)

from which we may isolate x0 in terms of our chosen chosen con�guration variables, substituting that
result back into our expressions for xi and Ri to reveal the form of (4.3).

We use the generalized Lagrangian method presented in [81] to derive globally valid, singularity-free
equations of motion. A more detailed overview of how to apply such methods to aerial manipulators can
be found in [27]. Ultimately, we obtain the dynamics in terms of the standard “manipulator equations”,

M(q) v̇ + C(q, v)v + g(q) = B(q)u. (4.5)

4.2.3 Sparsity of the Manipulator Equations

The choice of the system center of mass in the con�guration (vs. the more obvious choice of the vehicle
position) is deliberate. It has been shown [75] that the dynamics of �oating-base robots like aerial ma-
nipulators can be expressed in a decoupled form by transforming equations of motion derived in some
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naive representation into a sparse form where the center of mass position and velocity appear explicitly.
Informed by these results, we have chosen a state representation which e�ectively resolves this transfor-
mation at the kinematic level. The sparsity resulting from this choice will provide insight into the system
structure and simplify implementation. In particular, the equations of motion (4.5) can be expanded as

"
mI3⇥3 0

0 Mrot

#
v̇ +

"
0 0

0Crot

#
v +

"
mg e3

0

#
=

"
R e3 0

Brot I(3+n)⇥(3+n)

#
u, (4.6)

where the submatrices have the sparse state dependencies

Mrot = Mrot(✓), Brot = Brot(✓), Crot = Crot(✓, ✓̇,⌦). (4.7)

The e�ect of the thrust input on the rotational subsystem can easily be eliminated by a state-dependent
change of input variables. Therefore, as seen in Fig. 4.2, the dynamics take the form of two cascaded
subsystems—a fully actuated rotational subsystem evolves independently, feeding the direction of the
thrust vector into the underactuated translational subsystem, resembling the observations of [82].

4.3 Di�erential Flatness

As discussed in Chapter 3 and widely leveraged in the aerial robotics literature, di�erential �atness is
a system property that allows us to describe the dynamically feasible trajectories of an underactuated
system in a representation not subject to di�erential constraints [25]. Brie�y, we recall that a system
is di�erentially �at if there exists some (non-unique) �at output y 2 Y such that the state and inputs
(q, v, u) can be expressed as a function of �nitely many derivatives of the �at output (y, ẏ, . . . , y(↵)),
while the �at output y must be given in terms of the state and �nitely many derivatives of the inputs, i.e.,
(q, v, u, u̇, . . . , u(�)

). Moreover, the �at space and input space are of the same dimension.

The �at outputs must be di�erentially independent, meaning that there will be no dynamic feasibility
requirements on trajectories in the �at space, other than that the chosen curve be C↵. Therefore, each
su�ciently smooth trajectory in the �at space can be mapped to a dynamically feasible trajectory in the
state-input space, enabling e�cient trajectory planning and, in some sense, describing the structure of the
family of dynamically feasible trajectories for the system.

4.3.1 The Con�guration Manifold as a Fiber Bundle

To begin, we analyze the structure of the con�guration manifold. To begin, we recall the Hopf �bration,
leveraged in [41] for the control of a standard quadrotor. Brie�y, the Hopf �bration is the nontrivial �ber
bundle

S1 ,! S3 h�! S2, (4.8)
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where h is a smooth surjective map projecting S3 onto S2. The idea is that the total space S3 is locally
indistinguishable from the product of the base space S2 and the �ber space S1 (even though this is not the
case globally), and h�1

(s) (the �ber of total space “above” s 2 S2) is di�eomorphic to S1.

A double cover S3 ! SO(3) will reveal a related bundle

S1 ,! SO(3)
p�! S2, (4.9)

where p is the map R 7! R e3. We may also construct a local section (in other words, a local right inverse
of the bundle projection p) on some open set U ⇢ S2 in the form � : U ! SO(3) which assigns to each
element of U an element in the �ber above it, such that p � �(s) = s. Let us establish a smooth family
of such sections (in other words, a local trivialization) parametrized by  2 S1, on the open set U :=

S2 \ {�e3}, constructed using maps derived from [41] given by

H1 : S1 �! SO(3),  7!

2

64
cos � sin 0

sin cos 0

0 0 1

3

75 , (4.10)

H2 : S2 �! SO(3), s 7!

2

664

1 � s 21
1+s3 � s1s2

1+s3 s1
� s1s2

1+s3 1 � s 22
1+s3 s2

�s1 �s2 s3

3

775 . (4.11)

Composing these rotations as

R = �p(s, ) := H2(s)H1( ) (4.12)

yields a local trivialization �p : U ⇥ S1 ! SO(3), describing any element R 2 SO(3)with p(R) 6= �e3 in
terms of two speci�cations:

1. a direction s 2 S2 to point the vector e3 2 S2, and

2. a rotation around that vector by the angle  2 S1.

The quadrotor’s actuation geometry manifests this structure. If we point the thrust in some direction, we
are left with a remaining degree of freedom rotating around that vector, together constructing the full
orientation. Due to the product structure of the con�guration manifold, it is straightforward to use the
map ⇡(q) = p � pr2(q) = p(R) to express the entire con�guration manifold as the �ber bundle

R3 ⇥ Tn+1

| {z }
Y

,! R3 ⇥ SO(3) ⇥ Tn

| {z }
Q

⇡�! S2|{z}
S

(4.13)

where Q is the con�guration manifold, S is the shape space, and it will be shown that Y is the �at space.
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Thus, in particular, this system has the special property of con�guration �atness, where the �at outputs
depend only on the con�guration and not the velocities or inputs. In particular, the �at outputs will be

y = (x, ✓+) 2 Y (4.14)

where as before, x 2 R3 is the system’s center of mass, while ✓+ =
�
 , ✓

�
2 Tn+1 is the tuple of physical

joint angles augmented by the virtual joint around the thrust vector. We may also construct a correspond-
ing local trivialization given by

�⇡ : S ⇥ Y ! Q, (s, y) 7!
�
x,�p(s, ), ✓

�
(4.15)

and the local �at output map y = '(q) can be given explicitly by extracting  in terms of R from (4.12),
while the rest of the �at outputs are given by identity mappings. In particular, the local trivialization
highlights the local product structure of the con�guration manifold.

4.3.2 Deriving the Flatness Di�eomorphism

We must now give the state and inputs as functions of the �at outputs and their derivatives. In view
of (4.15), if we can determine the shape s in terms of derivatives of the known �at outputs y, we can
immediately reconstruct the entire con�guration in terms of the �at output derivatives. Likewise, by
di�erentiating (4.15) and invoking the kinematics we can also determine the velocities and accelerations,
from which the inputs can be found with the equations of motion. Thus, we seek to express the system’s
dynamic feasibility constraints in a form which we can solve to give the shape in terms of �at output
derivatives.

A trajectory is dynamically feasible if and only if the necessary generalized forces lie in the actuated sub-
space, namely the column space ofB. This is evident in (4.5), since only when the left-hand side lies within
the range ofB can u be chosen to satisfy the equality. Equivalently, the required forces must be orthogonal
to the unactuated subspace, such that the projection of the equations of motion onto this subspace takes
the form

B?(q)
T�M(q) v̇ + C(q, v) v + g(q)

�
= 0, (4.16)

where B?(q) is a matrix whose columns span the left nullspace of B in any con�guration q 2 Q. Because
the rotational subsystem is fully actuated, it is easily veri�ed that the choice

B?(q) =

" \
(R e3)

03+n⇥3

#
(4.17)

su�ces, where we use the hat map to encode the cross product in the form of matrix multiplication (i.e.,
âb = a ⇥ b for all a, b 2 R3). Note that for all q 2 Q, we have rankB?(q) = 2, the degree of underactua-
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tion. Using the local trivialization and its derivatives to express the state and accelerations in terms of the
shape and �at output derivatives, (4.16) will simplify to

s ⇥ (ẍ + g e3) = 0 (4.18)

which indicates that the thrust must point along the prescribed center of mass acceleration plus the e�ect
of gravity, a familiar requirement from the case of the standard quadrotor [25]. The constraint (4.18) has
two solutions for s, antipodal on S2, and customarily we select the solution with strictly positive thrust7,

s =
ẍ + g e3����ẍ + g e3

���� . (4.19)

from which we reconstruct the entire con�guration using (4.15). We may then di�erentiate (4.18) twice,
solving to give us the shape velocity and acceleration as

ṡ =

�
I3⇥3 � ssT

�
x(3)

����ẍ + g e3

���� , (4.20)

s̈ =
(I3⇥3 � ssT) x(4) � (2ṡsT + sṡT) x(3)

����ẍ + g e3

���� . (4.21)

From these solutions, we may reconstruct v and v̇ via derivatives of the local trivialization (4.15). Finally,
since we have already prescribed that the required generalized forces lie in the actuated subspace, we can
�nd the inputs using the pseudoinverse of B(q) as

u = B(q)†
�
M(q) v̇ + C(q, v) v + g(q)

�
, (4.22)

where we have
B(q)† =

�
B(q)TB(q)

��1
B(q)T, (4.23)

since B(q) has full column rank for all q 2 Q.

Thus, we have shown that this class of systems is always di�erentially �at, regardless of the particular
geometry. Because we require ✓̈+ and x(4) to determine the inputs, it must hold that ✓+ is C2 and x is C4

for there to exist a corresponding dynamically feasible trajectory for the physical system.

4.4 Task Space Planning

A natural means of specifying a task for a manipulator is to describe the desired motion of its end e�ector
via some suitable task outputs t 2 T . Then, given a desired trajectory for t, we must �nd the trajectories

7We could also choose the solution for which s and ẍ + g e3 are antiparallel (corresponding to negative thrust), thereby
obtaining another �atness di�eomorphism. See [59] for further discussion.
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Figure 4.3: The structure of the task space T depends on n, the number of joints in the arm. In the
degenerate case where adjacent axes are parallel, a di�erent de�nition should be adopted. Appropriate
de�nitions for n > 2 will be determined by the application and thus are not considered here.

for the con�guration q which all throughout satisfy the kinematic constraint

⌧(q) = t (4.24)

where ⌧ : Q ! T is the forward kinematic map. For fully-actuated manipulators (either minimal or re-
dundant), this problem deals only with the manipulator geometry, since any con�guration trajectory is
feasible. However, for underactuated systems, many trajectories for q which kinematically satisfy (4.24)
may not be dynamically feasible, so cannot be executed.

We argue that the generalization of this problem to di�erentially �at (and perhaps underactuated) systems
is to determine trajectories for the �at outputs y 2 Y that produce the speci�ed taskmotion for t 2 T , since
any such trajectory will be dynamically feasible. The appropriate task space will be of the same dimension
as the �at outputs, and in Fig. 4.3 we show the natural choice for aerial manipulators of n 2 {0, 1, 2} joints,
where for each case the task outputs consist of the position of the end e�ector xE and some rotational
information of varying dimension. Unfortunately, there will not in general exist a direct mapping between
the �at outputs and the task outputs, because the task outputs will also depend on the shape s 2 S.

4.4.1 Self-Motion Manifold

Due to the di�erence in dimension between the task space and con�guration manifold, the kinematic
structure of this problem resembles that of redundant, fully-actuated manipulators, wherein the subspace
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of the con�gurationmanifold consistent with a prescribed task output is known as the self-motionmanifold,
on which the con�guration may evolve without a�ecting the task output [83]. For fully-actuated systems,
the evolution on the self-motion manifold may be arbitrary, but for underactuated systems, even self-
motion is subject to dynamic constraints.

To characterize the self-motion manifold, let us �rst divide the con�guration manifold Q into open reg-
ular regions Qi, bounded by the critical value surfaces of the forward kinematic map, i.e. the physical
manipulation singularities. In particular, the singularity for n = 0 is due to the singularity in the local
trivialization at s = �e3, while the other cases are of the same sort as the familiar wrist singularity occur-
ring when axes align in a common plane. It can be shown that for each region, ⌧(Qi) = T , that is, each
regular region has the entire task space as its image under the forward kinematic map. This can be seen
by freezing the joints (since in the jointed case the critical value surfaces are given by critical values of the
joint angles) and varying only the vehicle pose to cover all of T .

We therefore remark that each regular regionQi is a trivial �ber bundle over T , with the forward kinematic
map serving as the bundle projection [83]. Then, for the self-motion manifold of any t 2 T , its component
lying in Qi is simply the �ber above t. We also remark that over each Qi, the constraints

⌧(q) = t, ⇡(q) = s (4.25)

are independent (i.e., for any prescribed task output, we may still choose the thrust direction). We will use
this observation to construct a new local trivialization � i

⌧ : T ⇥ Ui ! Qi in the form

q = � i

⌧ (t,s), (4.26)

which, by varying the shape s, describes the �ber above t 2 T .

To derive these local trivializations for each n, �rst consider the pose of the end e�ector in terms of the
con�guration a form directly analogous to (4.3), namely

xE = x + RpE(✓), RE = RQE(✓) (4.27)

and substituteR = H2(s)H1( ) from the family of sections (4.12). Clearly if we can determine  , we may
reconstruct R, and if we can determine ✓, we may also �nd x as

x = xE � RpE(✓) (4.28)

combining these results to construct the full task preimage.

Thus we consider the subproblem of determining the virtual joint  and physical joint angles ✓, separately
for each number of joints n 2 {0, 1, 2}:
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n = 2: Beginning with the orientation constraint from (4.27), we move H2(s) to the left side, yielding

H2(s)
TRE = H1( )QE(✓) (4.29)

This subproblem is equivalent to the inverse kinematics of a 3-joint wrist, which we may solve
for  , ✓1, and ✓2 in terms of the prescribed RE and s.

n = 1: Only the end e�ector axis aE = RE ãE is prescribed instead of the full orientation, so similarly:

H2(s)
TaE = H1( )QE(✓) ãE (4.30)

This subproblem is equivalent to the inverse kinematics of a 2-joint wrist, which we may like-
wise solve for  and ✓1.

n = 0:  is given explicitly and there are no physical joints to solve for.

Using the other trivialization (4.12) to derive these solutions seems to introduce a singularity at s = �e3.
However, precisely the same singularity appears in the �atness di�eomorphism (and such a singularity
must always exist, since (4.13) is a nontrivial �ber bundle), therefore it is already present and will have
no further deleterious e�ects on the �nal �at output trajectories. Also, a second di�eomorphism with a
singularity elsewhere could be used to operate in this regime, as done in [41] and [59].

4.4.2 Simultaneous Consideration of Kinematics and Dynamics

To formulate the problem, we begin with the forward kinematic map (4.24) and substitute in the family
of sections of the �atness bundle, expressing the kinematic constraint in terms of the �at outputs and the
shape. By the de�nition of di�erential �atness, there are no feasibility constraints on the �at outputs other
than smoothness, but the shape evolution is subject to the unactuated subspace constraint (4.18). Thus the
combined planning problem is described by the di�erential algebraic equation (DAE)

⌧ � �⇡(s,y) = t, (4.31a)

s ⇥ (ẍ + g e3) = 0, (4.31b)

where the �rst equation captures the algebraic (kinematic) constraints and the second equation captures
the di�erential (dynamic) constraints. (Note that in a DAE, “algebraic” refers to the absence of derivatives,
not a polynomial equation.)

Let us consider solutions over any particular Qi. Then, applying the trivialization of the task bundle to the
kinematic constraint (4.31a), followed by the �at output map, will yield a �at output trajectory in terms of
the task outputs and the shape as

y = ' � � i

⌧ (t,s), (4.32)
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so all that remains is to �nd a shape pro�le which also satis�es the feasibility constraint (4.31b). However,
the dynamic constraint on s depends itself on some �at output derivatives, namely ẍ. Let us therefore
de�ne the function

x = �(t,s) := pr1 �' � � i

⌧ (t,s) (4.33)

expressing the subset of �at outputs whose derivatives appear in the unactuated subspace constraint
(namely, x) in terms of the task outputs and the shape. Substituting this into (4.31b) gives us a second-order
time-varying di�erential equation in s,

s ⇥
⇣
g e3 +

d
2

dt2
�(t,s)

⌘
= 0, (4.34)

subject to the simple geometric constraint s 2 S2, or more explicitly,

sTs = 1. (4.35)

Thus, any joint solution of the two previous equations describes a dynamically feasible con�guration space
trajectory via (4.32) in the minimal form of a �at output trajectory. For su�ciently well-behaved systems
(to bemade precise in Sec. 4.5), the solution to the initial value problem for initial conditions (s0, ṡ0) 2 TS2

is unique and exists on an arbitrary interval. Because the di�erential equation is nonlinear, we �nd ap-
proximate solutions numerically; to do so we expand the di�erential operator using the second-order chain
rule and solve for the acceleration by also di�erentiating the geometric constraint. Integration in minimal
coordinates using two antipodal stereographic projections dramatically improves solution accuracy.

The dimension of the initial conditions space is 2 rankB? = 4, where the factor of 2 arises due to the sec-
ond derivative in the unactuated subspace constraint. In view of (4.32), these initial conditions parametrize
the continuous �nite-dimensional function space of solutions to the overall problem8, as seen in Fig. 4.4.
We also remark that the �atness of the system ensures controllability, such that the system is capable of
driving itself to the initial conditions required to execute a chosen solution.

4.4.3 Trajectory Optimization

Given the in�nite space of solutions, we may consider a cost function to aid in the selection of a single
solution, such as a running cost meant to minimize energy expenditure. The full state and inputs could be
reconstructed to evaluate a more complex running cost, however this may be unnecessary. Letting s?

(t)

be the solution to the initial value problem for (s0, ṡ0), we pose the minimization problem

min

(s0, ṡ0) 2 TS2

Z
T

0
J
�
s?
(t), ṡ?

(t), s̈?
(t)

�
dt (4.36)

8The choice of some particular regular region Qi also adds discrete multiplicity, as in classical inverse kinematics.
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Figure 4.4: The family of trajectories in the �at space which will exactly produce a desired task trajectory
can be parametrized by the initial conditions of the shape dynamics (in purple). Above are several di�erent
solutions (in blue) for the same task trajectory (in red) for a zero-joint system, along with the correspond-
ing evolution in shape space (in black). Solutions decrease in cost from left to right according to (4.37).
Animations are shown in the video attachment.

with a task-appropriate running cost; for example, choosing

J
�
s, ṡ, s̈

�
=

���
��� s̈
���
���
2

(4.37)

is very similar to the “minimum snap” cost used ubiquitously for quadrotors [25], since typically s̈ is
dominated by x(4) as seen in (4.21). Because the dimension of the decision variables is very small, we
can quickly �nd solutions to this shooting problem by numerical integration and gradient descent with
a reasonable initial guess (e.g., the hover condition). On a standard laptop, convergence occurs within
seconds. Furthermore, the proposed formulation is an anytime algorithm, ideal for real-time planning:
even if the optimization must be terminated early, the current best approximation speci�es a (suboptimal)
trajectory that is both dynamically feasible and guaranteed to achieve the desired task motion.

4.5 Internal Dynamics

The result of the previous section is that the dynamic feasibility constraint has been expressed in a minimal
and convenient form which does not restrict the motion in the task space; the task outputs may evolve
arbitrarily, while the shape dynamics arising from (4.34) govern the evolution of the system on the self-
motionmanifold, as excited by the taskmotion. We refer to this as the internal dynamics due to resemblance
to the method of input-output linearization [84].

This view highlights the risk that by exciting the internal dynamics, even some modest task motions
might require very aggressive or even unbounded self-motions which will not be physically realizable,
making even some mundane task motions impossible to perform. In [85], a zero-joint underactuated aerial
manipulator was treated as a redundant mechanism by regulating only the position of the tool and not the

82



yaw angle, leaving this last degree of freedom available to stabilize the internal dynamics, which otherwise
may exhibit �nite time escape.

We adopt a di�erent approach, which is to determine geometric criteria on the manipulator design which
will prohibit the �nite time escape of the internal dynamics, without sacri�cing a dimension of manipu-
lability. The stability of the internal dynamics (and naturally the avoidance of the physical manipulation
singularities) is then the previously mentioned condition that the di�erential equation (4.34) be su�ciently
well-behaved to guarantee existence and uniqueness of solutions to the initial value problem.

4.5.1 Internal Stability

Consider the problem of maintaining the task output at a constant value, a capability that any manipulator
should have. We refer to the internal dynamics under such a condition as the zero dynamics, borrowing
language again from input-output linearization. We note that expanding the second order derivative in
(4.34) via chain rule will in general produce terms that are quadratic in ṡ, such that the ODE expressed in
state space form will not be globally Lipschitz. Thus �nite time escape may occur even when keeping the
task output constant, which is clearly unacceptable. However, recalling the function � giving the center
of mass in terms of the task outputs and shape de�ned in (4.33), it can be shown that if

@�

@s
(t,s) = ��I3⇥3 (4.38)

for some constant � 6= 0, then the quadratic terms will vanish from the zero dynamics, yielding the di�er-
ential equation

s ⇥
�
g e3 � �s̈

�
= 0. (4.39)

By invoking the geometric constraint (4.35) on s, we can solve for the zero dynamics in the form

s̈ = �g

�
ŝ2e3 �

����ṡ
����2 s, (4.40)

which resembles the dynamics of an undamped spherical pendulum. We therefore consider the energy-
inspired function

H(s, ṡ) = �g

�
e
T
3s +

1

2
ṡTṡ, (4.41)

which can be shown to be the Hamiltonian of the system (and thus, Ḣ = 0), so the zero dynamics do not
exhibit �nite time escape since H is radially unbounded.9 The system has equilibria at (s, ṡ) = (±e3, 0),
and it is easily veri�ed using the Hamiltonian that the zero dynamics are globally stable in the sense of

9Using the Hamiltonian of the zero dynamics, wemay also demonstrate that even the internal dynamics excited by an arbitrary
task trajectory cannot escape in �nite time. It can be shown that, for large shape velocities, the generalized power Ḣ injected
into the internal subsystem is bounded by H as long as the task output derivatives are bounded. Then the comparison principle
will show that �nite time escape may not occur, and thus for any �nite duration task output trajectory with any shape initial
conditions, the internal state will remain bounded. We omit a full derivation here for brevity.
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Figure 4.5: Systems satisfying certain geometric criteria will enjoy favorable properties that ensure the
internal state remains bounded.

Lyapunov around the equilibrium with s = sgn(�) e3, while the other equilibrium is unstable, similar to
the stability result given in [85] for aerial manipulators of n = 0 joints.

Underactuated aerial manipulators whose physical and virtual joint axes all intersect at a common point,
in the spirit of a spherical wrist, will have the property (4.38), so long as both this intersection point and
the center of mass of each arm link can be expressed directly in terms of the task outputs. Such a system is
shown in Fig. 4.5a, and in general � =

m0
m
�, where � is the signed distance along the thrust vector from the

vehicle position to the intersection point. The systems shown in Figs. 4.3 and 4.4 also have this property.
Choosing geometry with � > 0 (where the intersection is above the vehicle body’s center of mass) is
preferred due to the singularities in the local trivialization and in the �atness di�eomorphism (occurring
when the thrust vanishes). We want to remain local to the hover equilibrium, avoiding inversion of the
vehicle, so that for typical trajectories, thrust remains positive.

4.5.2 Task Flatness

Now, consider systems with the special property

@�

@s
(t,s) = 0, (4.42)

namely the case where the center of mass can be expressed exclusively in terms of the task outputs with
no dependence on the shape. Then, the internal dynamics vanish as (4.34) collapses into an algebraic
constraint, which we solve for s in terms of derivatives of t and then explicitly reconstruct the �at output
trajectory. The existence of such a mapping means that unlike in the general case, the solution family
will be �nite and discrete. Therefore, the task outputs of such a system constitute another valid choice of
local �at outputs for the system, with the valid region bounded by the manipulation singularities. It can be
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Figure 4.6: We plan dynamically feasible trajectories to perform several aerial manipulation tasks: the
dynamic grasping of a moving object, precision spray painting, and 6-DOF pick and place. More details
are given in the simulation video, available at https://youtu.be/GOc6Begdb2s.

veri�ed that C4 smoothness of t will be su�cient, as it was for the �at outputs. Because such manipulators
are locally di�erentially �at with respect to the task outputs, we call this property task �atness.

For the task �atness condition (4.42) to hold for systems with n 2 {0, 1, 2} joints, the center of mass x

must be �xed in the end e�ector frame.10 For n = 1 it must also hold that x lies along the end e�ector
axis aE , while for n = 0, x must be at the end e�ector frame origin such that x = xE . Then in each
case, �xing the task outputs will fully determine the global position of the center of mass. To ensure that
the system center of mass will be static in the end e�ector frame, all bodies inboard of any given joint
must have their combined center of mass located along that joint’s axis. One example of such an aerial
manipulator is shown in Fig. 4.5b. We also remark that the geometric requirements imposed in previous
work [39] [68] [27] to show di�erential �atness of special classes of aerial manipulators with respect to
practically convenient �at outputs are essentially task �atness criteria from our perspective.

Task �atness is a useful property, and these requirements may be seen as design criteria for particularly
nice aerial manipulators. Task �atness precludes the existence of poorly behaved internal dynamics, while
also a�ording all the standard bene�ts of planning in the �at space; constraints in the state-input space can
bemapped to constraints on �at output derivatives, e�ciently encoding actuator saturation limits, obstacle
avoidance, and physical manipulation singularities without integration. Task �atness also guarantees that
periodic trajectories in the task space will always map to periodic trajectories in con�guration space.

4.6 Simulations

The entire approach was implemented in simulation for a variety of aerial manipulator platforms and
tasks. The �atness di�eomorphismwas veri�ed by simulating the open-loop dynamics under inputs corre-

10It’s worth noting that a system enjoying this property will still enjoy this property after rigidly attaching additional mass to
the end e�ector (since the added mass is also �xed in the end e�ector frame). Thus, picking up an object would not break task
�atness, but it could alter the �atness di�eomorphism. For relatively lightweight objects, this discrepancy can likely be neglected.
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sponding to aggressive �at output trajectories, showing precise agreement with the nominal trajectory. To
demonstrate the usefulness of agile manipulation, we plan a dynamically feasible trajectory for a quadrotor
with a body-�xed gripper to grasp a small object moving quickly along a curved path. We also simulate
spray painting a pattern on the curved surface of an elevated structure using a system with one joint,
motivating the importance of dynamic feasibility when error tolerance is small. Finally, we demonstrate
the bene�ts of leveraging the vehicle agility to maximize manipulability by planning 6-DOF pick and place
trajectories for a two-joint system. These simulations are shown in detail in the simulation video available
at https://youtu.be/GOc6Begdb2s, as well as brie�y in Fig. 4.6. In these simulations, we do not
consider the exchange of wrenches between the system and objects in the environment, leaving them to
ultimately be rejected by closed loop tracking control. This assumption is reasonable when performing
pick and place tasks with small objects or when performing tasks that do not require physical contact.

4.7 Conclusion

In summary, we have demonstrated that all underactuated aerial vehicles equipped with articulated ma-
nipulators are di�erentially �at systems regardless of their geometry. We have developed a new method
for determining the family of dynamically feasible trajectories which will produce a desired end e�ector
trajectory, allowing lightweight underactuated systems to perform dynamic maneuvers accurately. We
have also determined criteria for a class of aerial manipulators whose internal dynamics are guaranteed to
be well behaved, and another class for which the task outputs are themselves alternate �at outputs of the
system, each providing design speci�cations for hardware platforms. These speci�cations largely pertain
to the attachment geometry between the manipulator and the vehicle, an aspect which has been explored
in other mobile manipulation contexts as well [86, 87]. Our future work will address integration with
closed loop control and implementation on hardware, as well as the consideration of changing modes of
environmental contact and exerting non-negligible external wrenches while retaining dynamic feasibility.
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CHAPTER 5

ALMOST GLOBAL ASYMPTOTIC TRACKING ON
HOMOGENEOUS RIEMANNIAN MANIFOLDS

The material in this chapter is based on the publication [88], co-authored with Vijay Kumar.
The author of this thesis developed the theoretical contributions and simulations

and drafted the original manuscript (in collaboration with his co-author).

5.1 Introduction

In Chapters 3 and 4, we focused on dynamically feasible trajectory planning for underactuated robotic
systems, wherein the major focus was the identi�cation and exploitation of the property of di�erential �at-
ness. In the remainder of this thesis, we will consider the other half of the 2-DoF control architecture—the
design of tracking controllers that drive the system asymptotically toward a planned reference trajectory.

Awide range of methods have been proposed for tracking control in robotic systems, including those based
on model predictive control [35, 89, 90] or learning-based approaches [91–93]. However, explicit control
policies that can be written in closed form are particularly attractive approach for aerial and space vehicles
that must adhere to stringent computational budgets. Such methods typically require orders of magnitude
less computational power than their optimization-based counterparts [35]. Moreover, they sometimes
achieve performance similar to their learning-based counterparts [94] but typically do not su�er from the
brittleness of many learned control policies or necessitate computationally burdensome o�ine training.

5.1.1 Tracking in Fully-Actuated and Underactuated Systems

While local, linear methods have been applied to tracking control for decades, the design of explicit track-
ing control laws with global or almost global convergence for general classes of mechanical systems has
traditionally been limited to fully-actuated systems [95]. Intuitively, the control design problem is made
drastically easier by the availability of all possible control forces. However, tracking laws for particular
underactuated systems have also been designed via the hierarchical composition of tracking controllers
for subystems that “look” fully actuated (in a sense), such as in [96], which popularized a now-ubiquitous
geometric control design for quadrotor trajectory tracking. This approach �rst prescribes a desired thrust
force applied to the vehicle center of mass (treating it, temporarily, as a fully-actuated point mass) to track
the desired position trajectory. Because the vehicle’s net thrust direction is body-�xed, this determines two
degrees of freedom of the vehicle’s desired attitude; the third is determined by a desired yaw angle, and the
resulting desired orientation is ultimately tracked via an attitude controller, which prescribes the desired
moment generated by the propellers (since the attitude subsystem is a truly a fully-actuated subsystem).
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More broadly, the results of Chapter 3 suggest that such a hierarchical control design might be applicable
to a wider class of underactuated systems, where the desired shape is determined by the current state and
desired acceleration in the group component of a trivialization corresponding to a geometric �at output.
Tracking control laws designed for fully-actuated systems on both the shape space and symmetry group
could then (in principle) be composed hierarchically to generate a tracking controller for the system as a
whole (although, absent arguments of time-scale separation as in [26], the interaction between the subsys-
tems would need to be carefully analyzed). Overall, these observations suggest that tracking controllers
for fully-actuated systems (while also interesting and important in their own right) may have a signi�cant
role to play in the control of underactuated systems.

5.1.2 Tracking Control via Error Regulation

For some mechanical systems, it is possible to reduce the “tracking problem” (i.e., rendering an arbitrary
system trajectory attractive) to the easier “regulation problem” (i.e., asymptotically stabilizing an equilib-
rium) for the same system, using a state-valued “tracking error” between the reference and actual states
that “vanishes” only when the two are equal (e.g., (q � qd, q̇ � q̇d) for a mechanical system on Rn). Then,
feedback is designed to drive the error towards the origin, i.e., a constant (equilibrium) trajectory. Such a
reduction is substantially easier for fully-actuated (vs. underactuated) systems, since arbitrary forces can
be exerted, both to compensate for time variation in the reference and to inject suitable arti�cial potential
and dissipation terms to almost globally asymptotically stabilize the error [97].

Clearly, a smooth tracking controller suitable for operation on the entire state space (in general, the tangent
bundle of a non-Euclidean manifold) cannot rely on a local, coordinate-based tracking error. When the
con�guration manifold is a Lie group, [95] shows that the group structure furnishes an intrinsic, globally-
de�ned tracking error on the state space, via the action of the group on itself. Thanks to this global notion
of error, the authors of [95] remark that:

“...the tracking problem on a Lie group is more closely related to tracking on Rn

than it is to the general Riemannian case, for which the group operation is lacking.”

Tracking via error regulation on manifolds that may not be Lie groups is proposed in [98]. The authors
present a theorem ensuring almost global tracking for fully-actuated systems on compact Riemannian
manifolds, assuming the control inputs can be chosen to solve a “rank one” overdetermined linear system
at each state and time. Solutions exist in some special cases (e.g., on S2 with carefully chosen potential,
dissipation, and kinetic energy), although they are non-unique. In other cases, no solutions exist, and the
question of when solutions exist in general is left open. Also, the inputs may not depend continuously
on state and time, a desirable property that justi�es seeking only almost global asymptotic stability [99].
Other approaches applicable to general smooth manifolds such as [100] are global in the sense that the
trajectory is not restricted to a particular subset of the state space, but only local in the sense that only
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those initial conditions su�ciently close to the reference will converge.

5.1.3 Overview and Contributions

In view of these observations, and in pursuit of a systematic approach to tracking control for fully-actuated
mechanical systems in yet a broader setting, a question emerges:

For fully-actuated mechanical systems, on which class of manifolds
can the tracking problem be reduced to the regulation problem?

We pose this question in a global or almost global sense; if purely local convergence su�ces, the answer
is trivial (i.e., “all of them”), since smooth manifolds are locally Euclidean. In particular, in this chapter,
we consider the design of tracking controllers for mechanical systems evolving on homogeneous spaces, a
class of manifolds that includes all Lie groups but is in fact more general.

Another more practical motivation for considering mechanical systems evolving on this class of manifolds
is as follows. Recent work on trajectory tracking for quadrotors has designed controllers which construct
a hierarchical controller out of tracking controllers for three (vs. two) fully-actuated subsystems [101–103]:
a translational subsystem evolving on R3, a “tilt” subsystem (concerning the thrust direction) evolving on
S2, and a yaw subsystem evolving on S1. Such an approach has several motivations:

1. the di�erence in control authority between yaw and tilt (which is roughly an order of magnitude),

2. the invariance of the translational dynamics to rotations around the thrust vector (making yaw
tracking of lower priority than tilt tracking), and

3. the singularities inherent in constructing a desired orientation out of a desired tilt and yaw angle.

The third point above amounts to the observation that SO(3) is not di�eomorphic to S2 ⇥ S1, a fact closely
related to the nontriviality of the �ber bundle described in (4.9) in the previous chapter. Moreover, while
R3 and S1 clearly admit a Lie group structure, S2 does not (although it is a homogeneous space). Thus,
tracking on S2 serves as a prototypical motivating example, while the general setting is also of interest.

In what follows, we consider fully-actuated mechanical systems evolving on homogeneous manifolds. We
obtain globally valid “error dynamics” by extending an intrinsic error used in tracking for kinematic sys-
tems in [104] to the mechanical setting, exploiting the transitive action of a Lie group on the con�guration
manifold, even when the con�guration manifold lacks a group structure of its own. Using this error, we de-
sign a tracking controller for fully-actuated mechanical systems evolving on yet a broader class of spaces,
and obtain explicit expressions for the control law in the special cases of Lie groups and spheres of ar-
bitrary dimension. These tracking control laws are applied to example mechanical systems evolving on
R3 ⇥ SO(3) and S2. Overall, we contribute a systematic paradigm for synthesizing tracking controllers
with guarantees for a broad class of systems, including many space, aerial, and underwater robots.
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5.2 Mathematical Preliminaries

We begin by reviewing some mathematical background that will be essential for this chapter. In this
chapter, we will also assume all given curves are smooth.

5.2.1 Homogeneous Riemannian Manifolds

In this chapter, we will work within the following class of manifolds.

De�nition 5.1 (see [10, Ch. 3]). A homogeneous Riemannian manifold (Q,�,) consists of:

1. a smooth manifold Q,

2. a transitive left action � : G ⇥ Q ! Q, and

3. a �-invariant Riemannian metric .

The stabilizer of any point q 2 Q is the subgroup of G given by Gq =
�
g 2 G : �(g, q) = q

 
. •

It bears repeating that because the action is transitive, then for any pair of points q1, q2 2 Q, there al-
ways exists some element g 2 G such that �(g, q1) = q2. Moreover, because the Riemannian metric is
�-invariant, for any pair of tangent vectors vq, wq 2 TQ, we have 

�
vq, wq

�
= 

�
d�g(vq), d�g(!q)

�
.

Example 5.1 (A Lie Group with a Left-Invariant Metric). Any Lie group G equipped with the left action of
G on itself (i.e., L : (h, g) 7! hg) and any L-invariant metric I is a homogeneous Riemannian manifold.
In particular, by [9, Thm. 5.38], there exists an inner product I on g = TeG such that 8 vg, wg 2 TG,

I(vg, wg) = I
�
dLg�1(vg), dLg�1(wg)

�
. (5.1)

Moreover, L is a free action, i.e., for g 6= e, the map Lg has no �xed points. Thus, for any g 2 G, the
stabilizer is just Gg = {e}. Moreover, it is clear that the musical isomorphisms of I satisfy [

I(⇠) = I[(⇠)
and ]

I(⌧) = I](⌧) for all ⇠ 2 g and ⌧ 2 g⇤ (see, e.g., [9, Sec. 2.3.4]). •

Example 5.2 (The n-Sphere with the Induced Metric). For any n 2 N, consider the sphere Sn and the rota-
tion group SO(n+1). We recall that it is convenient to model these manifolds as embedded submanifolds
of high-dimensional Euclidean spaces, i.e., we let Sn

= {s 2 Rn+1
: sTs = 1} and

SO(n+1) = {R 2 Rn+1⇥n+1
: RTR = R RT

= I(n+1)⇥(n+1), detR = 1}. (5.2)

The Euclidean metric on Rn+1 is given by hhvq ,wq ii = vq
Twq for all vq, wq 2 TRn+1. Let ⇢ be the re-

striction of this metric to Sn ⇢ Rn+1 (i.e., let Sn be isometrically embedded in Rn+1) and let  be the
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restriction of the usual action of SO(n+1) on Rn+1 given by

 : SO(n+1) ⇥ Sn ! Sn, (R, q) 7! R q. (5.3)

Then, it is clear that (Sn, , ⇢) is an SO(n+1)-homogeneous Riemannian manifold. Moreover, since the
dual of a tangent vector in Rn+1 is just its transpose, ⇢ induces the canonical isomorphisms

⇢[
: TSn ! T ⇤Sn, vq ! vq

T, ⇢]
: T ⇤Sn ! TSn, fq ! fq

T (5.4)

and it can be veri�ed that Gq
⇠= SO(n) for all q 2 Sn. •

5.2.2 Fully-Actuated Mechanical Systems

In particular, we will consider the control of the following class systems on homogeneous spaces.

De�nition 5.2. A mechanical system on a homogeneous Riemannian manifold is a mechanical system
⌃ = (Q,, P, F ) for which P and  are invariant with respect to a transitive action � : G ⇥ Q ! Q. •

Since � is transitive, P is constant (hence dP = 0). Thus, from (3.1), the dynamics are given by

rq̇ q̇ = ]
(fq), (5.5)

and for fully-actuated systems, the control input fq 2 T ⇤Q may be chosen arbitrarily. We will consider
only fully-actuated systems in the remainder of this chapter.

Remark 5.1 (Generality). Even if the systemwere governed by the Riemannian connection er of a di�erent
metric e that fails to be�-invariant, or it were subject to additional state-dependent forcesF : TQ ! T ⇤Q,
the system can be rendered in the form (5.5) by the static state feedback

fq(q̇) = e[

⇣�er � r
�
(q̇, q̇) � F (q̇) + ̃]

(f 0
q)

⌘
, (5.6)

where
�er � r

�
is the “di�erence tensor” (see [10, Prop. 4.13]) between the Riemannian connection of ̃

and of an invariant metric , while f 0
q is a “virtual” input. Since any homogeneous space with compact

stabilizer admits an invariant metric [10, Cor. 3.18], a tracking controller for a�-invariant unforced system
will, in practice, often yield a tracking controller suitable for the more general system via (5.6). Also, the
invariant case is common, and it simpli�es the computations considerably.

5.2.3 Almost Global Asymptotic Tracking

In this chapter, our goal will be to design a controller that achieves the following control objective, where
dist̂ is the Riemannian distance in TQ corresponding to the Sasaki metric (the natural Riemannian metric
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on TQ induced by , as described in [105]). We remind the reader that the notation q̇ 2 TQ encompasses
both the position and velocity of the system simultaneously.

De�nition 5.3. A control policy (t, q̇) 7! fq(t, q̇) for the system (5.5) achieves almost global asymptotic
tracking of a reference trajectory qd : R ! Q if, for each t0 2 R, there exists a residual set St0 ✓ TQ of
full measure such that q̇(t0) 2 St0 implies that dist̂

�
q̇(t), q̇d(t)

�
! 0 as t ! 1. •

Remark 5.2. Like some prior de�nitions of asymptotic tracking [106], the previous de�nition contains no
Lyapunov-like conditions, only an asymptotic condition. Thus, specializing the de�nition to a constant
reference trajectory yields the notion of attractiveness (as opposed to asymptotic stability).

Remark 5.3. For each time t0, some exceptional set of initial conditionsEt0 = TQ\St0 fails to converge to
the reference. However, we require this set to bemeasure zero andmeager (the countable union of nowhere
dense sets). The latter notion is clearly topological (and thus independent of any explicit notion of “volume”
in the state space), and in fact the former is as well [4, Ch. 6]. On the other hand, the measure-theoretic
condition can be most easily interpreted as the requirement that for any smooth probability distribution
over TQ and any time t0, the probability of randomly sampling an initial state that fails to converge to
the reference must be exactly zero. This is a stronger notion than the notion of “almost global” tracking
employed in many other works (e.g., [107, Sec. III] and [96]), which only required that St0 ✓ TQ (in the
state space) project down to an almost global (i.e., full measure) set in Q (in the con�guration manifold).

5.2.4 Navigation Functions

The following functions were described in [97] (in the more general setting of manifolds with bound-
ary). They are particularly useful in generating arti�cial potential forces for stabilization. We recall that
a function P : Q ! R is a Morse function if all its critical points are nondegenerate (i.e., the Hessian is
non-singular at every critical point), and refer the reader to [9, Sec. 6.1.4] for details.

De�nition 5.4. On a boundaryless manifold Q, a 0Q-navigation function is a proper Morse function
P : Q ! R that has the point 0Q 2 Q as its unique local minimizer. A navigation function is said to
be perfect if its domain admits no other navigation function with fewer critical points. •

For example, picking any point 0Sn 2 Sn and kP > 0, the map

PSn : Sn ! R, q 7! �kP (0Sn)
T q (5.7)

is a 0Sn-navigation function. Following [97], a perfect navigation function on SE(3) with its minimum at
the identity can be given by

PSE(3) :


R x

01⇥3 1

�
7! tr

�
KR(I � R)

�
+ xTKx x, (5.8)
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where x 2 R3, R 2 SO(3), and Kx, KR are 3 ⇥ 3 symmetric positive-de�nite matrices where KR has
distinct eigenvalues, and I is the 3 ⇥ 3 identity matrix. Navigation functions on R3, SE(2), SO(3), and
SO(2) can be obtained from (5.8), and a navigation function on the product of boundaryless manifolds
can be given by the sum of those on each factor [108]. Thus, we can easily obtain an explicit navigation
function on any product space whose factors are all n-spheres or closed subgroups of SE(3), capturing a
very broad class of homogeneous spaces of interest in robotics.

5.3 An Intrinsic, State-Valued Tracking Error

In this section, we take an approach similar to that of [104] (which dealt with kinematic systems evolving on
homogeneous spaces) to describe an intrinsic state-valued tracking error suitable for mechanical systems
evolving on homogeneous Riemannian manifolds.

5.3.1 Lifts of Curves

De�nition 5.5. Consider a homogeneous Riemannian manifold (Q,�,). Given an origin 0Q 2 Q and a
smooth curve qd : R ! Q, a 0Q-lift of qd is any smooth curve gd : R ! G such that �

�
gd(t), 0Q

�
= qd(t)

for all t 2 R. •

Lifts are (very) non-unique in general, but later we will discuss the existence and uniqueness of a certain
kind of lift. The properties of a such a lift can also be illustrated via the following commutative diagram:

G

R Q

�
0Q

gd

qd

(5.9)

where �0Q : g 7! �(g, 0Q).

De�nition 5.6. For any actual and reference con�guration trajectories q, qd : R ! Q and a given 0Q-lift
gd of qd, the con�guration error trajectory is the smooth curve given by11

qe : R ! Q, t 7! �
�
gd(t)

�1, q(t)
�
, (5.10)

while the state error trajectory is its time derivative, q̇e : R ! TQ. •

In [104], the authors use a tracking error of the form (5.10) for kinematic (i.e., �rst-order) systems to
synthesize optimal tracking controllers with local convergence. (In fact, such an error state has its roots
in observer design [109].) We lift this de�nition to the tangent bundle to obtain a state-valued tracking

11Note that the subscript in qe indicates “error”, and has nothing to do with the identity element e 2 G.
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error for mechanical (i.e., second-order) systems. The following extends [104, Prop 4.1] to second-order
systems.

Proposition 5.1. Consider any actual and reference trajectories q, qd : R ! Q. Let gd : R ! G be a 0Q-lift
of qd, and let 0TQ 2 TQ be the zero tangent vector at 0Q. Then, for any time t 2 R, it holds that q̇(t) = q̇d(t)

if and only if q̇e(t) = 0TQ.

Proof. Suppressing explicit t-dependence, the actual and reference con�guration can be expressed as

q = �(gd,�(g
�1
d , q)) = �(gd, qe), qd = �(gd, 0Q), (5.11)

since by assumption, gd is a 0Q-lift of qd. Thus, we may express the actual and desired state trajectories as

q̇ = d�
qe(ġd) + d�gd(q̇e), (5.12a)

q̇d = d�
0Q(ġd) + d�gd(0TQ). (5.12b)

Assuming for su�ciency that q̇e = 0TQ (and thus, in particular, qe = 0Q), (5.12a)-(5.12b) immediately im-
plies that q̇ = q̇d. Assuming for necessity that q̇ = q̇d (and therefore, in particular, q = qd), we recall that
for each g 2 G, the maps �g and d�g are automorphisms (i.e., self-di�eomorphisms) of Q and TQ re-
spectively. For this reason, (5.11) implies qe = 0Q, while that conclusion and (5.12a)-(5.12b) imply that
q̇e = 0TQ. ⌅

In summary, the intrinsic tracking error smoothly transforms the state space (in a manner depending
smoothly on time) in such a way that only the current reference state is mapped to the zero tangent
vector over the origin of the lift. Also, for the (�-invariant) Riemannian distance dist, (5.11) implies that
dist

�
q(t), qd(t)

�
= dist

�
qe(t), 0Q

�
. Thus, (5.10) encodes the distance from the reference “accurately”.

5.3.2 Computing Horizontal Lifts

The following notions will aid in computing a lift of a given reference (and ultimately, the tracking error).

De�nition 5.7 (see [5, Sec. 23.4]). Consider a homogeneous Riemannian manifold (Q,�,) with a desig-
nated origin 0Q 2 Q. A reductive decomposition is a splitting g = f � q such that q ✓ g is anAdF -invariant
subspace, where F = exp f = G0Q (the stabilizer at 0Q). •

Note that q is a subspace of g, but not necessarily a subalgebra, (i.e., it need not be closed under [· ,·]).
Moreover, referring to [110, Prop. 1], we have the following convenient fact.

Fact 5.1. Every homogeneous Riemannian manifold admits a (perhaps non-unique) reductive decomposition.

Thus, we may use the notion of reductive decompositions to describe the following kind of lifts.
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Proposition 5.2 (Horizontal Lifts in Reductive Homogeneous Spaces). Consider a homogeneous Rieman-
nian manifold (Q,�,) with origin 0Q 2 Q and reductive decomposition g = f � q. For each smooth curve
qd : R ! Q and any initial point g0 2 G such that �(g0, 0Q) = qd(0), there exists a unique smooth curve
gd : R ! G (called the horizontal lift of qd through g0) with the following properties:

1. Lifting: gd is a 0Q-lift of qd,

2. Initial Condition: gd(0) = g0, and

3. Horizontality: dL�1
gd(t)

�
ġd(t)

�
2 q for all t 2 R.

Proof. By [6, Prop 9.33], G is a (left) principal F -bundle over Q = G/F , where F = exp f. In particular,
the projection map is given by ⇡ : G ! Q, g 7! �(g, 0Q), while the free and proper action is given by

⌥ : F ⇥ G ! G, (f, g) 7! Rf�1(g). (5.13)

Moreover, we claim that the distribution on G given by

HG =
�
dLg(q) : g 2 G

 
(5.14)

is a well-de�ned principal connection on the principal F -bundle ⇡ : G ! Q. Since this is clearly a smooth
distribution and HgG is complementary to VgG (the vertical distribution) for all g 2 G, it su�ces to show
that HG is ⌥-invariant. To do so, we compute

d⌥f

�
H⌥�1

f
(g)G

�
= dR

�1
f

�
dLgf (q)

�
= dLg � Adf (q) = dLg(q) = HgG, (5.15)

where we have relied upon the AdF -invariance of q. Thus, the claim follows from the existence and
uniqueness of horizontal lifts of curves in principal bundles (see [7, Sec. 2.9]). ⌅

Remark 5.4 (Sections, Lifts, and Nontrivial Bundles). The proof of Proposition 5.2 describes a sense in
which a lift projects “down” to the original curve via ⇡. If the principal bundle ⇡ : G ! Q is trivial (i.e.,
G ⇠= Q ⇥ F globally and not merely locally), then there exist global sections � : Q ! G, i.e., smooth maps
satisfying ⇡ � � = id. In fact, any such section furnishes a (perhaps non-horizontal) lift gd : t 7! � � qd(t).
However, when ⇡ : G ! Q is a nontrivial bundle (e.g., the bundle corresponding to (S2, , ⇢), namely
⇡ : SO(3) ! S2), the nonexistence of global sections makes it impossible to generate global lifts using
a section. Nor can the initial value g0 of a horizontal lift depend continuously on qd(0) alone. Thus,
continuous deformation of the reference trajectory can result in discontinuous changes in the tracking
error. However, such a discontinuity is with respect to the choice of reference trajectory (i.e., the planning
layer); once a reference trajectory qd has been selected, the con�guration error will depend smoothly on
both time and state. Note also that even for a horizontal lift gd of some qd, when qd(t1) = qd(t2) it may
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still be that gd(t1) 6= gd(t2) due to nontrivial “holonomy” (see [7, Fig. 3.14.2]).

Remark 5.5 (Computing Horizontal Lifts Numerically). Let (⇡ ⇥ 'i
) : ⇡�1

(Ui) ✓ G ! (Ui ✓ Q) ⇥ F,

i 2 {1, . . . , k} be a collection of local trivializations covering ⇡ : G ! Q. Let Ai
: TUi ! f be the local

connection forms forHG (see [7, Prop. 2.9.12]). Suppose qd(t) 2 Uj for t 2 [t1, t2] and let f j
: [t1, t2] ! F

solve the initial value problem (IVP)

f j
(t1) = 'j

�
g(t1)

�
, ḟ j

(t) = dLfj(t) � Aj
�
q̇d(t)

�
. (5.16)

Then the horizontal lift gd through g0 of the curve qd satis�es

gd(t) = (⇡ ⇥ 'j
)
�1
�
qd(t), f

j
(t)
�
for all t 2 [t1, t2]. (5.17)

Moreover, the restriction of the reference trajectory to any �nite interval may be subdivided into �nitely
many segments, each contained within a single trivialization. We repeatedly solve the IVP (5.16) numer-
ically for each segment, ultimately reconstructing a smooth lift in G via (5.17). Computationally, this is
preferable to solving an IVP in G directly, since it ensures that integration error will accumulate only
along the �bers (vs. horizontally). Hence, numerical integration accuracy is not paramount (reducing the
computational burden), since the solution will be an exact lift, even if it is not perfectly horizontal. The
lifted reference at time t can also be computed “just in time” to compute the tracking error.

With these tools in mind, we can now describe the computation of the tracking error for some examples.

Example 5.1 (A Lie Group, continued). Since the stabilizer of any point g on the homogeneous Riemannian
manifold (G, L,I) isGg = {e}, 0G-lifts (of any kind, horizontal or otherwise) are unique for each 0G 2 G.
Making the usual choice 0G = e, the lift is the original curve itself, and the con�guration error is

ge : R ! G, t 7! gd(t)
�1 g(t), (5.18)

showing that in the special case of Lie groups, the con�guration error reduces elegantly to a familiar,
intuitive form, called the “right group error function” [9, p. 548]. In the additive group G = (Rn,+), i.e.,
a vector space, the con�guration error is (unsurprisingly) the map t 7! g(t) � gd(t). •

Example 5.2 (The n-Sphere, continued). On the homogeneous Riemannian manifold (Sn, , ⇢), we choose
the origin 0Sn = en := (0, . . . , 1) and identify so(n) with the n ⇥ n skew-symmetric matrices. Following
[5, Sec. 23.5], we have the reductive decomposition so(n+1) = f � q, where

f =

("
⇠ 0

0 0

#
: ⇠ 2 so(n)

)
, q =

("
0 �

��T 0

#
: � 2 Rn

)
. (5.19)

We horizontally lift a given con�guration reference trajectory qd : R ! Sn in the sense of Proposition
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5.2 to obtain the lifted reference Rd : R ! SO(n+1). Then, the con�guration error in the form (5.10) is
simply

qe : R ! Sn, t 7! Rd(t)
T q(t), (5.20)

where the lifted reference Rd is computed numerically in the manner of Remark 5.5 for accuracy. •

5.4 Almost Global Asymptotic Tracking

This section presents the main result of this chapter, namely, a controller guaranteeing almost global
asymptotic tracking for fully-actuated mechanical systems on arbitrary homogeneous Riemannian mani-
folds. First, we prove a helpful lemma that will be used in the proof of the main result.

5.4.1 Families of Curves

Following [10, Ch. 6], we introduce the following notion, which will help us account for the contributions
of both the reference and actual trajectories in the time variation of certain quantities.

De�nition 5.8. A family of curves on a manifold Q is a smooth map F : R2 ! Q. Moreover, a family of
curves F has a diagonal curve given by f : t 7! F (t, t), as well as transverse and main curves at each s

and r, given respectively by F s
: r 7! F (r, s) and Fr : s 7! F (r, s). In addition, letX(F ) denote the set of

vector �elds over F , de�ned as smooth maps (r, s) 7! V (r, s) such that V (r, s) 2 TF (r,s)Q for all r, s 2 R.
Finally, the transverse and main velocity of F are de�ned respectively as

@rF : (r, s) 7! Ḟ s
(r), @sF : (r, s) 7! Ḟr(s), (5.21)

which are easily veri�ed to be elements of X(F ). •

For any V 2 X(F ), we may also compute its partial covariant derivative along the transverse or main
direction, operations denoted respectively by Dr, Ds : X(F ) ! X(F ). This operation is de�ned by re-
stricting the vector �eld over the family of curves to a vector �eld along each transverse (resp. main)
curve and computing the usual covariant derivative along that curve, then combining the results. That is,

�
Dr V

�
(r, s) =

�
r

Ḟ sV
s
�
(r, s),

�
Ds V

�
(r, s) =

�
r

Ḟr
Vr

�
(r, s), (5.22)

where V s
: r 7! V (r, s) and Vr : s 7! V (r, s).

We now prove the helpful lemma.

Lemma 5.1. For a Riemmanian manifold (Q,) and a family of curves F : R2 ! Q, the “diagonal” curve
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given by � : t 7! F (t, t) satis�es the identity

�
r�̇ �̇

�
(t) =

�
Dr @rF + 2Dr @sF +Ds @sF

�
(t, t). (5.23)

Proof. Since this is a purely local question, we are free to work in local coordinates (qi
) around any point

�(t) = F (r, s) 2 Q. Expressing the coordinate form of F as F (r, s) =
�
q1(r, s), . . . , qn

(r, s)
�
, the coor-

dinate form of � is given by �(t) =
�
q1(t, t), . . . , qn

(t, t)
�
, so that �̇(t) =

⇣
@q

k

@r
+

@q
k

@s

⌘
@k, where the pre-

vious partial derivatives (and all subsequent ones) are evaluated at (r, s) = (t, t). Then, by the coordinate
formula for covariant derivatives along curves,

�
r�̇ �̇

�
(t) =

⇣
@
2
q
k

@r2
+

@
2
q
k

@r@s
+

@
2
q
k

@s@r
+

@
2
q
k

@s2
+
�

@q
i

@r
+

@q
i

@s

��
@q

j

@r
+

@q
j

@s

�
�

k

ij

⌘
@k, (5.24)

where �k

ij
are the “Christo�el symbols” for r. Meanwhile, @rF =

@q
k

@r
@k and @sF =

@q
k

@s
@k, and using the

same coordinate formula, we obtain

(Dr @rF )(t, t) =
⇣

@
2
q
k

@r2
+

@q
i

@r

@q
j

@r
�

k

ij

⌘
@k, (5.25a)

(Dr @sF )(t, t) =
⇣

@
2
q
k

@s@r
+

@q
i

@s

@q
j

@r
�

k

ij

⌘
@k, (5.25b)

(Ds @sF )(t, t) =
⇣

@
2
q
k

@s2
+

@q
i

@s

@q
j

@s
�

k

ij

⌘
@k. (5.25c)

To complete the argument, it su�ces to substitute (5.25a)-(5.25c) into (5.23) and use the equality of mixed
partials and the symmetry of the Christo�el symbols to obtain (5.24). ⌅

5.4.2 Main Result

We now present the main result on trajectory tracking. First, we recall that the body velocity of any curve
g : R ! G is the curve in g given by t 7! dL

�1
g(t)

�
ġ(t)

�
.

Theorem 5.1 (Almost Global Asymptotic Tracking on Homogeneous Riemannian Manifolds). Consider
a fully-actuated mechanical system on (Q,�,), a reference trajectory qd : R ! Q, and any smooth 0Q-lift
gd : R ! G of qd with bounded body velocity. Let P be a 0Q-navigation function and ⌫ be a Riemannian
metric on Q. For each (“�xed”) state q̇ 2 TQ, de�ne a curve in Q and a vector �eld along it given by

�q
: r 7! �

�1
gd(r)

�
q
�
, X q̇

: r 7! d�
�1
gd(r)

(q̇). (5.26)

Then, the smooth time-and-state feedback control policy

fq(t, q̇) = � d�
⇤
g
�1
d

⇣
dP (qe) + ⌫[

(q̇e) + [ �
⇣
r�̇q

�
�̇q

+ 2X q̇
�⌘

(t)
⌘

(5.27)

achieves almost global asymptotic tracking of the reference and local exponential convergence of the error.

98



Remark 5.6.We use the “dummy variable” r when de�ning eq and X q̇ to emphasize that q̇ (and, in par-
ticular, q) is held �xed as r varies (despite the dependence of q̇ on t). This allows us to rigorously and
intrinsically express (5.27) using only the standard formalism for covariant di�erentiation along curves.
It follows from [10, Prop. 4.26] that (5.27) depends only on t 2 R and q̇ 2 TQ. Additionally, although
the control policy (5.27) requires choosing (and computing) a certain lift gd, we show that the qualitative
closed-loop stability properties are ultimately independent of this choice. Later, we will also explore a case
in which it is not necessary to actually compute the lift, as the control action can be computed directly
from the state and derivatives of the reference (without any integration).

Proof of Theorem 5.1. Observe that the con�guration error (5.10) is the diagonal curve of the family of
curves

E : R2 ! Q, (r, s) 7! �
�
gd(r)

�1, q(s)
�
, (5.28)

in the sense that qe(t) = E(t, t). We will use this observation to express the covariant derivative rq̇e q̇e in
terms of the respective contributions of the reference and actual trajectories. From Lemma 5.1, we have

�
rq̇e q̇e

�
(t) =

�
Dr @rE + 2Dr @sE +Ds @sE

�
(t, t), (5.29)

where we have evaluated the right-hand side at (r, s) = (t, t). We now aim to compute the terms on the
right-hand side of (5.29). Observing that Es

(r) = �q(s)
(r) and also that

@sE(r, s) = d�gd(r)�1

�
q̇(s)

�
= X q̇(s)

(r), (5.30)

we may verify that

�
Dr @rE

�
(t, t) =

�
r

ĖtĖ
t
�
(t) =

�
r�̇q �̇q

�
(t),

�
Dr @sE

�
(t, t) = (r�̇qX q̇

)(t). (5.31)

Recall (see [9, Thm. 5.70]) that the �-invariance of  implies that for any � 2 A(q) and Z 2 X(�),

r(�g � �)0(d�g � Z) = d�g �
�
r�̇Z

�
. (5.32)

From this fact, (5.5), and (5.30), it follows that

(Ds @sE)(t, t) =
�
r

Ėt
Ėt

�
(t) = d�

�1
gd(t)

� ]
�
fq(t)

�
, (5.33)

where t 7! fq(t) is the input force signal corresponding to t 7! q(t). Substituting these results into (5.29),

(rq̇e q̇e)(t) = r�̇q(�̇q
+ 2X q̇

)(t) + d�
�1
gd(t)

� ]
�
fq(t)

�
, (5.34)

yielding the desired covariant derivative.
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We now apply the control policy given in (5.27). From Lemma 2.2, it follows that (d�g � ]
)
�1

= d�
⇤
g � [

for any g 2 G. Using this fact and substituting (5.27) into (5.34), we obtain the autonomous error dynamics

rq̇e q̇e = �]
�
dP (qe) + ⌫[

(q̇e)
�
, (5.35)

which is a mechanical system with strict dissipation and a navigation function potential. Thus, it follows
from [97, Thm. 2] that there exists an open dense set S ✓ TQ of full measure, such that for any t0 2 R
(since (5.35) is autonomous), if q̇e(t0) 2 S, then q̇e(t) ! 0TQ as t ! 1, and the local exponential stability
of 0TQ for (5.35) follows from [9, Thm. 6.45].

To complete the argument, it remains to formally show that

lim
t!1

q̇e(t) = 0TQ =) lim
t!1

dist̂

�
q̇(t), q̇d(t)

�
= 0. (5.36)

Towards this end, we note that q̇e(t) ! 0TQ implies in particular that qe(t) ! 0Q, and thus we have
dist

�
qe(t), 0Q

�
! 0. Since dist is�-invariant, in view of (5.11) this implies that dist

�
q(t), qd(t)

�
! 0.

For su�ciently large t, it then follows from the analysis in [111, II.A.2] that we have

dist̂

�
q̇(t), q̇d(t)

�
 dist

�
q(t), qd(t)

�
+
����⌧�t

�
q̇(t)

�
� q̇d(t)

����

, (5.37)

where �t : [0, 1] ! Q is the shortest geodesic from q(t) to qd(t) and ⌧�t : T�t(0)Q ! T�t(1)Q is parallel
transport along �t. Then, (5.37), (5.12a)-(5.12b), and the triangle inequality imply that

lim
t!1

dist̂

�
q̇(t), q̇d(t)

�


lim
t!1

dist
�
qe(t), 0Q

�
+ lim

t!1

����⌧�t � d�gd

�
q̇e(t)

�����

+ lim

t!1

����(⌧�t � d�
qe(t) � d�

0Q)
�
ġd(t)

�
)
����


.
(5.38)

The �rst limit on the right-hand side has already been shown to be zero. Since parallel transport preserves
Riemannian norms and  is �-invariant, the second is zero as well.

Finally, we consider the third limit on the right-hand side of (5.38). From the basic properties of group
actions (in particular, �g � �h = �gh), it can be veri�ed that d�q

: TG ! TQ is an equivariant map for
each q 2 Q (i.e., d�g � d�

q
= d�

q � dLg). Moreover, since  is �-invariant, the parallel transport map
satis�es d�g � ⌧� = ⌧(�g��) � d�g . Together, these facts enable us to reexpress the third limit, obtaining

lim
t!1

dist̂

�
q̇(t), q̇d(t)

�
 lim

t!1

����(⌧↵t
� d�

qe(t) � d�
0Q)

�
⇠d(t)

�����

, (5.39)

where ⇠d is the body velocity of gd and ↵t := �gd(t)�1 � �t can be recognized as the shortest geodesic from
qe(t) to 0Q. De�ning the linear map

At : g ! T0QQ, ⇠ 7!
�
⌧↵t

� d�
qe(t) � d�

0Q
�
(⇠) (5.40)
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and letting || · ||g be any norm on g, it is now clear that

lim
t!1

dist̂

�
q̇(t), q̇d(t)

�
 lim

t!1

����At

����
op

����⇠d(t)
����
g
, (5.41)

where || · ||op is the operator norm induced on linear maps from g to T0QQ by || · ||g and . Since ⇠d is
bounded for all time, uniform equivalence of norms implies the existence of a constant C > 0 such that

lim
t!1

dist̂

�
q̇(t), q̇d(t)

�
 C lim

t!1

����At

����
op

. (5.42)

It then su�ces to observe that ⌧↵t
! id as qe(t) ! 0Q, and thus

����At

����
op

! 0 as t ! 1. Thus, we have
shown that dist̂

�
q̇(t), q̇d(t)

�
! 0 as t ! 1, completing the argument. ⌅

5.5 Explicit Control Policies for Particular Cases

In this section, we specialize the controller proposed in Theorem 5.1 to two familiar classes of homogeneous
Riemannian manifolds, obtaining concise and explicit expressions for the control policy (5.27) in each case.

5.5.1 Tracking Control on Lie Groups

We �rst consider the special case most studied in prior work, namely that of the Lie group. Our primary
goal in examining the Lie group setting in detail is to underscore that although our approach is strictly
more general than prior work such as [95], we nonetheless recover a comparable result in this restricted
setting—in the case of a Lie group, the only e-lift of the reference trajectory is the reference trajectory
itself, so the approximation procedures of Sec. 5.3 are not needed. The tracking control policy we will
now recover uses the same con�guration error as in [9, Thm. 11.29], although our di�erent feedforward
terms lead to guaranteed almost global asymptotic tracking. In that sense, our result is qualitatively more
similar to [95, Thm. 1], but they use a di�erent con�guration error (i.e., ge = gd g�1).

In what follows, we denote the body velocities of trajectories g, gd, and ge (i.e., the actual, reference, and
error con�gurations) by ⇠, ⇠d, and ⇠e respectively. Also, for any smooth function P : G ! R on a Lie
group G, we de�ne the map

⇣P : G ! g⇤, g 7! dL
⇤
g � dP (g). (5.43)

Corollary 5.1 (Almost Global Asymptotic Tracking on a Lie Group). For any Lie group G, consider a fully-
actuated mechanical system on (G, L,I) and a smooth reference trajectory gd : R ! G with bounded body
velocity. Let P be a e-navigation function on G and let D be an inner product on g. Then, for the virtual
control ⌧ = dL

⇤
g(fg), the control policy

⌧
�
(g, ⇠), (gd, ⇠d, ⇠̇d)

�
=�⇣P (ge) � D[

(⇠e) + I[
�
Ad

�1
ge
(⇠̇d) + [⇠, ⇠e]

�
+ ad

⇤
⇠e
I[(⇠e) � ad

⇤
⇠
I[(⇠) (5.44)
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achieves almost global asymptotic tracking of the reference and local exponential convergence of the error.

Proof. It will su�ce to apply Theorem 5.1with the con�guration error (5.18), the given navigation function,
and the metric ⌫ = ⌫D, namely the left-invariant Riemannian metric on G induced by D as in (5.1). In
particular, Since �g

(r) = L
�1
gd(r)

(g) = gd(r)
�1g = Rg

�
gd(r)

�1
) and

d
dr

�
gd(r)

�1
�
= � dLgd(r)�1 � dRgd(r)�1 � ġd(r), (5.45)

we may use (5.45) to compute

�̇g
(r) = dRg

⇣
� dLgd(r)�1 � dRgd(r)�1 � ġd(r)

⌘
= dL�g(r)

�
� Ad

�1
�g(r) � ⇠d(r)

�
. (5.46)

It is also clear that

X ġ
(r) = dL

�1
gd(r)

(ġ) = dLgd(r)�1 � dLg(⇠) = dL�g(r)

�
⇠
�
, (5.47)

so that altogether, we have

(�̇g
+ 2X ġ

)(r) = dL�g(r)

�
2 ⇠ � Ad

�1
�g(r) � ⇠d(r)

�
. (5.48)

The result [9, Thm. 5.40] implies that that for any smooth curve � in G, any vector �eld X 2 X(�), and
curves �, ⌘ in g such that �̇(r) = dL�(r)

�
�(r)

�
and X(r) = dL�(r)

�
⌘(r)

�
, we have

�
r�̇X

�
(r) = dL�(r)

�
⌘̇(r) + rI

�
�(r), ⌘(r)

��
, (5.49)

where rI : g ⇥ g ! g is the bilinear map given by

(�, ⌘) 7! 1
2 [�, ⌘] �

1
2I

]
�
ad

⇤
� I[ ⌘ + ad

⇤
⌘ I[ �

�
. (5.50)

In preparation for applying the rule (5.49), with ⌫(r) given by the argument on the right-handside of (5.46)
and ⌘(r) given by the argument on the right-hand side of (5.48), we verify by direct computation that

d
dr

�
2 ⇠ � Ad

�1
�g(r) � ⇠d(r)

�
= �Ad

�1
�g(r) � ⇠̇d(r) (5.51)

After verifying ⇠e = ⇠ � Ad
�1
ge

(⇠d), we substitute the above calculations into (5.49) and simplify:

r�̇g(�̇g
+ 2X ġ

)(t) = dLge

⇣
� Ad

�1
ge

(⇠̇d) + rI
�

� Ad
�1
ge

(⇠d), 2⇠ � Ad
�1
ge

(⇠d)
�⌘

(5.52)

= dLge

⇣
� Ad

�1
ge

(⇠̇d) + rI
�

� ⇠ + ⇠ � Ad
�1
ge

(⇠d)| {z }
= ⇠e

, ⇠ + ⇠ � Ad
�1
ge

(⇠d)| {z }
= ⇠e

�⌘
(5.53)

= dLge

⇣
� Ad

�1
ge

(⇠̇d) + rI
�
⇠e � ⇠, ⇠e + ⇠

�⌘
. (5.54)
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Figure 5.1: Almost global asymptotic tracking for a mechanical system on R3 ⇥ SO(3) (e.g., the Omnidi-
rectional Aerial Robot), using the controller proposed in Corollary 5.1 (a special case of Theorem 5.1).

Since rI is bilinear, and its �rst term is antisymmetric while its second is symmetric, we have

rI
�
⇠e � ⇠, ⇠e + ⇠

�
= rI(⇠e, ⇠e) � rI(⇠, ⇠) + rI(⇠e, ⇠) � rI(⇠, ⇠e) (5.55)

= �I]
�
ad

⇤
⇠e
I[ ⇠e

�
+ I]

�
ad

⇤
⇠
I[ ⇠

�
+

1
2 [⇠e ,⇠ ] �

1
2 [⇠ ,⇠e ] (5.56)

= [⇠e ,⇠ ] + I]
�
ad

⇤
⇠
I[ ⇠ � ad

⇤
⇠e
I[ ⇠e

�
. (5.57)

Substituting this result into (5.54), we obtain the covariant derivative term in (5.27):

r�̇g(�̇g
+ 2X ġ

)(t) = dLge

⇣
� Ad

�1
ge

(⇠̇d) + [⇠e ,⇠ ] + I]
�
ad

⇤
⇠
I[ ⇠ � ad

⇤
⇠e
I[ ⇠e

�⌘
. (5.58)

Finally, using this result to compute ⌧ = dL
⇤
g(fg) with fg as de�ned in (5.27) yields

⌧ = � dL⇤
ge

⇣
dP (ge) + ⌫[

D(ġe) + [

I � dLge

�
�Ad

�1
ge

(⇠̇d) + [⇠e ,⇠ ] + I](ad⇤
⇠
I[ ⇠ � ad

⇤
⇠e
I[ ⇠e)

�⌘
(5.59)

= � dL⇤
ge

� dP
| {z }

= ⇣P

(ge) � dL⇤
ge

� ⌫[

D � dLge| {z }
= ⌫

[

D

(⇠e)

� dL⇤
ge

� [

I � dLge| {z }
=

[

I

�
�Ad

�1
ge

(⇠̇d) + [⇠e ,⇠ ] + I](ad⇤
⇠
I[ ⇠ � ad

⇤
⇠e
I[ ⇠e)

� (5.60)

where the annotations are direct consequences of (5.43) and the application of Lemma 2.2, and we note that
dL

⇤
g � dL

⇤
gd

�1 = dL
⇤
ge
. Finally, noting that by construction, [

I
��
TeG

= I[ : g ! g⇤ (and likewise for ⌫D),
we may simplify (5.60) to obtain exactly (5.44). Thus, the claim follows immediately by Theorem 5.1. ⌅

Example 5.3 (The Omnidirectional Aerial Robot [112]). Consider an aerial robot consisting of a single rigid
body and actuators capable of applying arbitrary wrenches. Compensating for the gravity forces in the
manner described in Remark 5.1 yields a fully-actuated mechanical system on (R3 ⇥ SO(3), L,I), where
I =diag(mI3⇥3, J3⇥3). We use Corollary 5.1 with (5.8) to design a controller for tracking pose trajectories.
A rollout of the resulting control policy is shown in Fig. 5.1. •
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5.5.2 Tracking Control on Spheres

We now consider tracking control on spheres of arbitrary dimension. It should be understood that the
calculations below are performed in the ambient space (i.e., we explicitly consider that q, qd 2 Sn ✓ Rn+1

and Rd 2 SO(n+1) ✓ R(n+1)⇥(n+1), and follow the rules of matrix multiplication). We also denote the
identity matrix of dimension (n+1) ⇥ (n+1) simply by I.

Corollary 5.2 (Almost Global Asymptotic Tracking on Sn). For any n 2 N, consider a fully-actuated me-
chanical system on (Sn, , ⇢). Let qd : R ! Sn be a smooth reference trajectory and Rd : R ! SO(n+1)

be any 0Sn-lift of qd with bounded body velocity. Then, for any kP , kD > 0, the control policy

fq(t, q̇) = �kP qd
T�q qT � I

�
� kD

�
q̇T + qTṘd Rd

T�
+
�
qTR̈d + 2 q̇TṘd

�
Rd

T�q qT � I
�

(5.61)

achieves almost global asymptotic tracking of the reference and local exponential convergence of the error.

Proof. It will su�ce to apply Theorem 5.1 with the con�guration error (5.20), the navigation function (5.7),
and the dissipation metric ⌫ = kD ⇢. To show this, we begin by computing

dP (qe) = (�kP 0Sn)
T
(I � qe qe

T
) = �kP qd

T�
I � q qT

�
Rd. (5.62)

Recalling that ⇢[
(vq) = (vq)

T for the usual metric on the sphere, we also have

⌫[
(q̇e) = kD ⇢

[
(q̇e) = kD(qT Ṙd + q̇T Rd). (5.63)

Following [9, Ex. 4.99], the covariant derivative along a smooth curve � of any X 2 X(�) is given by

�
r�̇X

�
(r) =

�
I � �(r) �(r)T

�
Ẋ(r), (5.64)

where X(r) is thought of as a vector in R3. Following (5.26), we compute directly �q
(r) = Rd(r)T q (thus,

�̇q
(r) = Ṙd(r)T q) and X q̇

(r) = Rd(r)T q̇, so that we may compute the covariant derivative in (5.27) as

r�̇q(�̇q
+ 2X q̇

)(t) =
�
I � qeqe

T��R̈d
T q + 2 Ṙd

T q̇
�
. (5.65)

For any R 2 SO(n+1) and ! 2 T ⇤Sn, by Lemma 2.2 we have

d 
⇤
R(!) = ⇢[ � d 

�1
R

� ⇢]
(!) = ⇢[ � d (RT)(!

T
) = ⇢[

(RT!T
) = !R. (5.66)

Thus, we may compute (5.27) by substituting in (5.62), (5.63), and (5.65) and applying (5.66). Simplifying
yields exactly (5.61), and thus, the claim follows immediately by Theorem 5.1. ⌅

The control law (5.61) given in Corollary 5.2 is explicit; nonetheless, its direct implementation requires
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Figure 5.2: The controller proposed in Corollary 5.3 (a special case of Corollary 5.2 and Theorem 5.1),
applied to a mechanical system on the homogeneous Riemannian manifold S2 (e.g., the Axisymmetric
Satellite). We show snapshots of parallel rollouts from a random sampling of initial states (con�guration
and velocity) in TS2. All sampled rollouts converge asymptotically to the reference. An animation of these
simulations is available at https://tinyurl.com/SphereTracking.

the computation of a lift of the reference trajectory. While Sec. 5.3 outlined an e�ective and robust means
of approximating lifts numerically, a tracking control law that depends not on the lift but rather on the
reference trajectory directly would be even more advantageous—besides eliminating the need for online
approximation of a lift when tracking dynamically updated references, such a result would also facilitate
more easily di�erentiating the control policy (e.g., for backstepping-style control or automatic gain tuning).

In the following corollary, we give such a control policy in the special case of a system evolving on S2.
Below, ·̂ : R3 ! so(3) is the usual “hat map”, also written (·)⇥, de�ned by âb := a ⇥ b for all a, b 2 R3.

Corollary 5.3 (Almost Global Asymptotic Tracking on S2 via Implicit Lift). Consider a fully-actuated
mechanical system on (S2, , ⇢) and let qd : R ! S2 ⇢ R3 be a smooth reference trajectory with bounded
velocity q̇d. Then, for any kP , kD > 0, the control policy

fq

�
(q, q̇), (qd, q̇d, q̈d)

�
= � kP qd

T�q qT � I
�

� kD

�
q̇T + qT (qd ⇥ q̇d)⇥

�

+
�
qT (qd ⇥ q̇d)

2
⇥ + qT (qd ⇥ q̈d)⇥ + 2 q̇T(qd ⇥ q̇d)⇥

��
q qT � I

� (5.67)

achieves almost global asymptotic tracking of the reference and local exponential convergence of the error.

Proof. It will su�ce to apply Corollary 5.2 for a horizontal lift Rd : R ! SO(3) corresponding to the
reductive decomposition (5.19) and simplify. By the properties of horizontal lifts in Prop. 5.2 and the
reductive decomposition (5.19), we have have two constraints on Rd and its derivative, namely,

qd =  (Rd, e3) and dL
�1
Rd

�
Ṙd

�
2 span{ê1, ê2}. (5.68)

Letting ⌦d : R ! R3 be the vector representative of the body velocity of Rd (i.e., Ṙd = Rd ⌦̂d), we di�er-
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entiate the �rst constraint and re-express both constraints explicitly in terms of ⌦d, yielding

(e3)⇥⌦d = �Rd
Tq̇d, e3

T
⌦d = 0, (5.69)

or in matrix form, "
(e3)⇥

e3
T

#
⌦d =

"
�Rd

Tq̇d

0

#
. (5.70)

Solving this linear system by multiplying both sides by the transpose of the coe�cient matrix yields

⌦d = e3 ⇥ Rd
Tq̇d = Rd

T�
(Rd

T
e3) ⇥ q̇d

�
= Rd

T
(qd ⇥ q̇d), (5.71)

where we recall that (R v)⇥ = R (v)⇥RT for all R 2 SO(3) and v 2 R3 (see [8, p. 311]). Thus, it is also
clear that the body velocity of the lift Rd is bounded. Moreover, we may compute

Ṙd = Rd ⌦̂d = Rd

�
Rd

T
(qd ⇥ q̇d)

�
⇥ = Rd Rd

T
(qd ⇥ q̇d)⇥Rd = (qd ⇥ q̇d)⇥Rd, (5.72)

and another derivative gives us

R̈d = (qd ⇥ q̇d)⇥Ṙd + (qd ⇥ q̈d + q̇d ⇥ q̇d| {z }
=0

)⇥Rd =
�
(qd ⇥ q̇d)

2
⇥ + (qd ⇥ q̈d)⇥

�
Rd. (5.73)

After substituting these results into the tracking control law (5.61) and simplifying, all instances of Rd and
Rd

T cancel, yielding exactly (5.67). Thus, the claim follows immediately by Corollary 5.2. ⌅

We now apply the controller obtained in the previous corollary to a classic example.

Example 5.4 (The Axisymmetric Satellite). Consider a free-�oating satellite, modeled as an (underactuated)
mechanical system on (SO(3), L,J) consisting of a rigid body with inertia tensor J = diag(J1, J2, J3)

with J1 = J2 and control torques lying in a two-dimensional left-invariant codistribution corresponding
to span{ê1, ê2} ⇢ so(3)⇤, where ·̂ : R3 ! so(3)⇤ ⇠= so(3) is the usual isomorphism satisfying âb = a ⇥ b.

The satellite is equipped with a camera or antenna aligned with the e3 axis, whose bearing is thus described
by the output y : Ṙ 7! R e3. This system is invariant under the (left) action of SO(2) on SO(3) correspond-
ing to a body-�xed rotation around e3. By Noether’s Theorem, the evolution around the symmetry axis is
governed by conservation of momentum (i.e. d

dt

�
J3⌦3(t)

�
= 0). When⌦3(t0) = 0, reduction by this sym-

metry (see [9, Thm. 5.83]) will yield a fully-actuated mechanical system on (S2 = SO(3)/SO(2), , J1 ⇢).

It is clear that output tracking for the original (underactuated) system on SO(3) amounts to asymptotically
tracking a state trajectory for the reduced (fully-actuated) system on S2. We apply the explicit tracking
control policy obtained in Corollary 5.3. Fig. 5.2 shows rollouts of the controller from 100 randomly
sampled initial states for a particular reference trajectory, all of which converge to the reference. •
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5.6 Discussion

Of the n-spheres, only S1 and S3 admit a Lie group structure, and thus methods like [95] are not applicable
to tracking on, e.g., S2. As pointed out in [98], methods which do not rely on reduction to regulation often
fail to achieve or certify almost global convergence, in large part because they cannot bene�t from results
like [97, Thm. 2]. Other smooth tracking controllers on S2 (e.g. [100] or [107, Sec. III]) do not guarantee
convergence from almost every initial state in TQ, rather ensuring convergence from a smaller region
that, e.g., may contain the zero tangent vector over almost every point in Q (not TQ), sometimes leading
to an abuse of the term “almost global” in the literature in regards to asymptotic stability.

We also note that the di�erential properties of a state-valued tracking error are important, since it was the
surjectivity of the partial derivative of the tracking error appearing in (5.34) that enabled the feedforward
cancellation of other terms and the injection of arbitrary dissipation and potential, regardless of the system
considered (a di�culty of the approach proposed in [98]). Also, Example 5.4 demonstrates applicability to
output tracking for certain underactuated systems, and more broadly, the control policies obtained here
could also serve as subsystem controllers in a larger hierarchical control scheme, a common approach for
underactuated systems [26, 96].

Unfortunately, it is not yet clear to us whether an “implicit lift” control law like the one obtained in Corol-
lary 5.3 can be generalized to Sn for arbitrary n 2 N (or more broadly, to arbitrary homogeneous Riemma-
nian manifolds), since we made use of speci�c properties of the vector cross product in R3. In achieving
this result for the special case of S2, several choices seem to have played an important role:

1. the chosen lift gd was horizontal (and thus, its body velocity depended only on q̇d and gd),

2. the chosen navigation function P was invariant to the action of the origin’s stabilizer group G0Q (in
fact, the level sets of the navigation function are exactly the orbits of the stabilizer group), and

3. the chosen damping metric ⌫ wasG-invariant (in fact, simply a scaling of the kinetic energy metric).

Although we leave the goal of generalizing this result to future work, we suspect that the choices listed
above will play an essential role in any successful attempt.

5.7 Conclusion

In this chapter, we proposed a systematic, uni�ed tracking controller for fully-actuatedmechanical systems
evolving on homogeneous Riemannian manifolds. Because the controller achieves almost global asymp-
totic tracking, we guarantee exactly zero probability of nonconvergence from an initial state randomly
selected from a smooth probability distribution. After obtaining explicit control policies for two common
cases, we apply the method to example systems on two di�erent con�guration manifolds. At a conceptual
level, our results illustrate that it is the transitivity of a Lie group’s action on the con�guration manifold
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(and not the absence of �xed points) that enables us to perform tracking control via error regulation in
mechanical systems.
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CHAPTER 6

ALMOST GLOBAL ASYMPTOTIC STABILITY OF CASCADES

The material in this chapter is based on the publication [113], co-authored with Matthew D. Kvalheim
and Vijay Kumar. The author of this thesis developed the theoretical contributions and drafted the
original manuscript in very close collaboration with his co-authors (especially the second author).

6.1 Introduction

In Chapter 5, we considered the design of tracking controllers for fully-actuated systems evolving on a
broad class of manifolds. A major motivation for considering the control of fully-actuated systems, despite
our broader focus on underactuated systems, is the prominence of tracking controllers for underactuated
systems that are designed via the hierarchical composition of tracking controllers for fully-actuated sub-
systems [26, 96, 102]. However, a major shortcoming of these existing approaches is the apparent need to
design and certify these hierarchical controllers for particular systems on a case-by-case basis. Indeed, [96]
carefully analyzes the stability of the overall cascade’s dynamics, guessing and explicitly verifying a Lya-
punov function for the overall system. On the other hand, the approach of [26] may perhaps be more
immediately generalized, but its certi�cate of stability relies on assumptions of time scale separation be-
tween the subsystems that are hard to justify for realistic systems. Broadly speaking, to develop scalable
and generalized approaches for the design and certi�cation of hierarchical controllers for underactuated
systems (along the lines discussed at the start of Chapter 5), it seems necessary to explicitly leverage the hi-
erarchical structure of the control architecture, and to ultimately develop compositional certi�cates whose
criteria depend only (or at least primarily) on properties of the subsystems in isolation.

Towards this end, in this chapter, we study cascade dynamical systems. Indeed, a long research tradition
has studied the implications of cascade structure to simplify analysis and aid design [114]. This compo-
sitional approach is largely motivated by the observation that control design for a subsystem is typically
easier (e.g., due to lower dimensionality, lower relative degree, or full actuation). Cascades appear in many
interesting and important physical systems, and many underactuated mechanical systems can be rendered
as a cascade after a feedback transformation [115].

6.1.1 Cascades in Hierarchical Control

To better situate our interest in cascade stability within the context of control design, we consider the
following situation, largely based on [116, Sec. VII]. For some smooth manifold X , consider a control
system with state (x, z) 2 X ⇥ Rk, and inputs u 2 Rk given by

ẋ = h(x, z), (6.1a)
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ż = u, (6.1b)

where h is smooth. A standard motivation for considering such a system is augmenting an existing plant
model (6.1a) with actuator dynamics (modeled here in (6.1b) as a simple integrator), in which case the goal
is to “bootstrap” a control policy for the original system into one suitable for controlling the system with
actuator dynamics. Suppose that for some di�erentiable function x 7! K(x), the system

ẋ = h
�
x, K(x)

�
(6.2)

has an asymptotically stable equilibrium 0X 2 X . In other words, if we temporarily regard z as a control
input, the feedback z = K(x) stabilizes (6.1a). Then, it is reasonable to design a control policy for u

that will drive z asymptotically towards the “outer loop” control policy K(x) (a simple approach which is
closely related to a class of methods frequently called “backstepping” control [117]). In particular, propos-
ing the “inner loop” control law

u = �z + K(x) + dK
�
h(x, z)

�
(6.3)

and de�ning an error state y = z � K(x), we may compute

ẏ = ż � dK(ẋ) = �z + K(x) + dK
�
h(x, z)

�
� dK

�
h(x, z)

�
= �y. (6.4)

Expressing the system’s closed-loop dynamics in these new variables, we have

ẋ = h
�
x, K(x) + y

�
, (6.5a)

ẏ = �y. (6.5b)

It is natural to wonder what can be said about the stability12 of the combined system (6.5a)-(6.5b), given
our knowledge of the stability of (6.5b) with respect to y = 0 and the stability of (6.5a) when y = 0. Such
a question is motivated by the observation that if we can formulate stability guarantees for the overall
system based only on properties of the subsystems in isolation, the design problem for each subsystem
can be decoupled, facilitating a compositional approach to control synthesis.

6.1.2 Local Asymptotic Stability of Cascades

In fact, at a minimum, we can always say the following.

Fact 6.1 (Local Asymptotic Stability of Cascades, see [118]). Consider a cascade of the form

ẋ = f(x, y), (6.6a)

12While one can consider the stability of more general invariant sets, we will study only the stability of point attractors.
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ẏ = g(y), (6.6b)

where x and y evolve on smoothmanifoldsX and Y and f and g are smooth. Suppose that 0Y 2 Y is a locally
asymptotically stable equilibrium of ẏ = g(y) and 0X 2 X is a locally asymptotically stable equilibrium of
ẋ = f(x, 0Y ). Then, (0X , 0Y ) is a locally asymptotically stable equilibrium of the full cascade.

Thus, considering f(x, y) := h
�
x, K(x)+y

�
and g(y) := �y, the proposed control design (6.3) for (6.1a)-

(6.1b) renders the closed loop dynamics (6.5a)-(6.5b) at least locally asymptotically stable. However, the
basin of attraction for the full cascade may be very small, making such a control design brittle.

6.1.3 Global Asymptotic Stability of Cascades

It is clear that if both subsystems of a cascade are asymptotically stable linear systems, then the full cascade
is in fact globally asymptotically stable. However, in the nonlinear setting, even if the subsystems are
globally asymptotically stable, the same cannot immediately be said for the full cascade. Nonetheless,
it turns out that only one additional assumption is needed to ensure the global asymptotic stability of a
cascade with globally asymptotically stable subsystems. The following is now a classic result.

Fact 6.2 (Global Asymptotic Stability of Cascades, see or [118] or [119]). Consider a cascade of the form

ẋ = f(x, y), (6.7a)

ẏ = g(y), (6.7b)

where x and y evolve on smooth manifolds13 X and Y and f and g are smooth. Suppose that 0Y 2 Y is a
globally asymptotically stable equilibrium of ẏ = g(y) and 0X 2 X is a globally asymptotically stable equi-
librium of ẋ = f(x, 0Y ). Moreover, suppose that every trajectory of the full cascade (6.7a)-(6.7b) is bounded
for all forward time. Then, (0X , 0Y ) is a globally asymptotically stable equilibrium of the full cascade.

A straightforward implication of the previous fact in regards to the hierarchical control design (6.3) is the
following: if we also assume that (6.2) is globally asymptotically stable, and we can somehow guarantee
that x remains within some arbitrary compact set for all trajectories of (6.5a)-(6.5b), then the closed-loop
cascade (6.5a)-(6.5b) is globally asymptotically stable.

In fact, the long tradition of research on the global asymptotic stability of cascades has largely served
to identify various conditions that ultimately imply the boundedness requirement of Fact 6.2. Many ap-
proaches rely on explicit disturbance robustness properties of the driven subsystem, leveraging properties
such as “input to state stability”, which roughly requires the asymptotic response of the system under a dis-
turbance input to be bounded by the size of the input (and therefore also implies global asymptotic stability
of the system in the absence of disturbances). A celebrated result then establishes the global asymptotic

13This result is usually stated on Euclidean spaces, but we are free to state it on smooth manifolds, noting that the basin of
attraction of any equilibrium of a smooth vector �eld is di�eomorphic toRn for somen [120], soX and Y are “secretly” Euclidean.
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stability of a cascade for which the driven subsystem is input to state stable and the driving subsystem is
globally asymptotically stable [119].

On the other hand, singular perturbation techniques assume a time scale separation between a “fast” inner
loop and a “slow” outer loop, and show that a system’s behavior tends toward that of a “reduced” system
as the ratio between convergence rates tends to zero [121]. While these methods can be applied to ana-
lyze cascades, such an approach would necessitate an inner loop control design that achieves very rapid
convergence, which can be quite challenging (or even impossible) for a control system with realistic input
constraints. Methods avoiding explicit robustness or time scale assumptions have often relied on local
exponential stability of the driving subsystem as well as growth restrictions on the “interconnection term”
coupling the system and on a suitable Lyapunov function for the unforced dynamics [117].

6.1.4 Almost Global Asymptotic Stability of Cascades

The already-discussed global results have numerous important applications, but their utility in the analysis
of geometric controllers is rather limited. Indeed, the smooth tracking controllers developed in Chapter 5
only guaranteed convergence from an almost global set of initial conditions—and in fact, continuous vector
�elds with a globally asymptotically stable equilibrium exist only on those manifolds that are di�eomor-
phic to Rn [122], whereas the state space of many robotic systems (e.g., free-�ying robots) is not [123]. It
is reasonable to wonder whether one can avoid this obstruction by accepting the need for discontinuous
control policies. However, the hierarchical control design proposed in (6.3) depends on the di�erential
dK , thus it is reasonable to require K to be continuously di�erentiable. Moreover, if K is continuously
di�erentiable, the same is true of the vector �eld x 7! h

�
x, K(x)

�
in (6.2). Since an equilibrium of a con-

tinuously di�erentiable vector �eld on a non-Euclidean manifold can be no better than almost globally
asymptotically stable, standard results on the stability of cascades with globally asymptotically stable sub-
systems do not seem applicable in settings where the control action applied to a system evolving on a
non-Euclidean manifold will ultimately be exerted by another subsystem (governed by its own dynamics).

Such obstructions motivated the development of an almost global notion of input to state stability [116],
in which an asymptotic gain holds for all but a measure zero set of initial conditions; a cascade is then
guaranteed to be almost globally asymptotically stable if its driven subsystem is almost globally input to
state stable and its driving subsystem is almost globally asymptotically stable. While verifying almost
global input to state stability can be challenging, this can be achieved under conditions on the exponential
instability of other equilibria as well as the “ultimate boundedness” of trajectories of the system even when
subjected to arbitrary disturbances [124].

However, not all almost globally asymptotically stable cascades have a driven subsystem enjoying this
“almost input to state stability” property; indeed, it seems to be an inherently stricter property than neces-
sary, since it characterizes the response of the system to arbitrary disturbances, while for our purposes, the
driven subsystem is subjected to a converging disturbance for almost every initial condition of the driving
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Figure 6.1: A sampling of initial conditions and resulting trajectories of the motivating example system
(6.8a)-(6.8b), projected down to T2 from the full state space TT2

= TS1 ⇥ TS1, where the “small” axis
of the torus corresponds to ✓ and the “large” axis corresponds to �. All sampled trajectories converge to
(0, 0, 0, 0) 2 TT2, marked in red. Despite the highly non-local and topologically complex behavior of the
trajectories, our results certify the almost global asymptotic stability of the system, without the need to
guess an explicit Lyapunov function for the full cascade. An animation of parallel rollouts from randomly
sampled initial conditions is available at https://tinyurl.com/TorusCascade.

subsystem. Yet, the lack of a comprehensive understanding of such systems has required unsubstantiated
assumptions or bespoke stability certi�cates for hierarchical controllers with almost global asymptotic sta-
bility in practice, inhibiting generalization; for example, a Lyapunov function for the combined systemmay
be handcrafted via human intuition, even though the cascaded structure inspired the control design [96],
or it may be necessary to resort to time scale separation arguments that may not hold in reality [26].

6.1.5 Illustrative Example

To further motivate our investigation, we present a simple representative example. Consider a cascade
evolving on TT2 (the tangent bundle of the torus), given by

✓̈ = �(sin ✓ + ✓̇) cos 2�, (6.8a)

�̈ = �(sin�+ �̇), (6.8b)

where x = (✓, ✓̇) 2 TS1, y = (�, �̇) 2 TS1, and we make the identi�cation TS1 ⇠= S1 ⇥ R for notational
convenience. A sampling of system trajectories is shown in Fig. 6.1. In fact, (6.8b) describes a damped
pendulum with total energy given by W : (�, �̇) 7! 1 � cos�+

1
2 �̇

2. Using W as a LaSalle function, it
can be shown that that (�, �̇) = (0, 0) is almost globally asymptotically stable for the driving subsystem
(6.8b). By the same reasoning, (✓, ✓̇) = (0, 0) is also almost globally asymptotically stable for the restriction
of the driven subsystem (6.8a) to the stable equilibrium of the driving subsystem.

It turns out that the entire cascade (6.8a)-(6.8b) is almost globally asymptotically stable, but the system
does not satisfy the hypotheses of any of the previously discussed results. In particular, the subsystems
are not globally asymptotically stable, nor is there a time scale separation between the loops (since when
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Cascade System

g( ·)
R

⌃ : f( · , ·)
Ryẏ xẋ

Subsystem Decomposition

g( ·)
R

⌃y :
yẏ

f( · , ·)0Y
R

⌃x :
xẋ

f( · , ·)

f( · , ·)y

0Y

x

⌃h :
�

h(x, y)
+

Figure 6.2: We give su�cient conditions for the almost global asymptotic stability of a cascade system ⌃
in terms of qualitative properties of the “driving subsystem” ⌃y and the “unforced subsystem” ⌃x, as well
as growth rate criteria on the “interconnection term” ⌃h and a Lyapunov function for ⌃x. In the diagram
above, 0Y is the stable equilibrium of ⌃y .

decoupled, they are identical). Furthermore, viewing (�, �̇) as a disturbance to (6.8a), it can be seen that
the driven subsystem is not almost globally input to state stable (in the sense of [116, Def. 2.1]), since the
response to the bounded disturbance (�, �̇) = (⇡/2, 0) grows unbounded from almost all initial conditions.
Nonetheless, the results presented in this chapter will ultimately guarantee the almost global asymptotic
stability of a class of systems that includes (6.8a)-(6.8b).

6.1.6 Overview and Contributions

In this chapter, we study the asymptotic stability of cascades of the form

ẋ = f(x, y), (6.9a)

ẏ = g(y), (6.9b)

where x and y evolve smooth, connected, complete Riemannianmanifolds without boundaryX and Y , and
f and g are smooth (see Remark 6.2 for further explanation of the choice of setting). The cascade system
is depicted graphically in in Fig. 6.2 as system ⌃. In what follows, we use properties of the decomposed
subsystems ⌃x, ⌃y , and ⌃h in Fig. 6.2 to certify the almost global asymptotic stability of ⌃. In Sec. 6.3,
we present the main results, which show that when ⌃x and ⌃y are almost globally asymptotically stable
and locally exponentially stable and all chain recurrent points of ⌃x are hyperbolic equilibria, then the
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cascade is almost globally asymptotically stable and locally exponentially stable as long as all trajectories
are bounded in forward time. We extend this result inductively to upper triangular systems with arbitrarily
many subsystems. In Sec. 6.4, we examine the hypotheses of the main results in greater detail, discussing
some important classes of systems enjoying the stated chain recurrence property and also showing that
forward boundedness can be veri�ed via growth rate criteria on ⌃h and on a Lyapunov function for ⌃x.
In Sec. 6.5, we apply our results to the motivating example, before discussing the results and concluding
the chapter in Secs. 6.6 and 6.7.

6.2 Mathematical Preliminaries

We begin with a brief review of relevant concepts from dynamical systems theory. We adopt the de�nitions
of [125], whose results on asymptotically autonomous semi�ows are central to our approach.

6.2.1 Autonomous and Nonautonomous Semi�ows

De�nition 6.1. A nonautonomous semi�ow on a smooth Riemannian manifold (M, µ) is a continuous map

� : {(t, s) : 0  s  t < 1} ⇥ M ! M (6.10)

such that �(s, s, x) = x and �
�
t, s,�(s, r, x)

�
= �(t, r, x) for all t � s � r > 0. A semi�ow is called

autonomous when additionally, �(t + r, s + r, x) = �(t, s, x) for all r > 0. •

In the previous, the parameters s and t can be thought of as respective “start” and “end” times. Hereafter,
we will use the shorthands �(t,s) : x 7! �(t, s, x) for nonautonomous semi�ows and �t : x 7! �(t, 0, x)

for autonomous semi�ows.

Remark 6.1 (Notation and Setting). A forward complete vector �eld V 2 X(M) is one for which unique
solutions to the initial value problem (IVP)

ẋ(t) = V
�
x(t)

�
, x(0) = x0 (6.11)

exist for all positive time and from all initial conditions x0 2 M . A forward complete vector �eld generates
an autonomous semi�ow �, where for each for x0 2 M , the curve t 7! �t(x0) is the solution to IVP for
x0. On the other hand, a “time-varying” vector �eld V : R ! X(M) whose initial value problems have
unique solutions for all forward time can generate a non-autonomous semi�ow. Moreover, a vector �eld
that is both forward complete and backward complete (with unique solutions for all negative time as well)
generates a �ow, which is in fact a group action � : R ⇥ M ! M , motivating the choice of notation.
However, we consider only the forward evolution of the system, and thus work with semi�ows.

The following class of nonautonomous semi�ows de�ned in [125] will be of particular interest.
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De�nition 6.2. A nonautonomous semi�ow � is asymptotically autonomous with limit semi�ow ⇥ if

�(tj+sj ,sj)(xj) ! ⇥t(x) as j ! 1. (6.12)

for all arbitrary sequences tj ! t, sj ! 1, and xj ! x. •

6.2.2 Notions of Stability

In this chapter, we consider the stability of the simplest kind of invariant set (i.e., a �xed point).

De�nition 6.3. The equilibrium set of an autonomous semi�ow � is given by

E(�) =
�
x 2 M : �t(x) = x for all t � 0

 
. (6.13)

The basin of attraction of any equilbrium 0M 2 E(�) is given by

B(0M ) =
�
x 2 M : �t(x) ! 0M as t ! 1}, (6.14)

and 0M is hyperbolic if its linearization has no purely imaginary eigenvalues (see [126, p. 149]). •

We de�ne the following notions of stability for equilibria.

De�nition 6.4 (Notions of Stability). An equilibrium 0M 2 E(�) is said to be

• Lyapunov stable if for every open neighborhood N" ✓ M of 0M , there exists an open neighborhood
N� ✓ M of 0M such that �t(N�) ✓ N" for all t � 0,

• almost globally attractive if B(0M ) is full measure and residual, i.e., the complement of B(0M ) is
measure zero (see [4, p.128]) and meager (a countable union of nowhere dense sets) in M ,

• almost globally asymptotically stable if it is Lyapunov stable and almost globally attractive, and

• locally exponentially stable if there exists an open neighborhoodN ✓ M of 0M and constants ↵,� >

0 such that for all x 2 N and t � 0, we have distµ
�
�t(x), 0M

�
 ↵ distµ

�
x, 0M

�
e��t. •

We recall that because we de�ne local exponential stability using the Riemannian distance, an equilibrium
is locally exponentially stable if and only if it is hyperbolic.

6.2.3 The Chain Recurrent Set

The following points in state space, visualized in Fig. 6.3, are particularly notable.

De�nition 6.5. For an autonomous semi�ow� on (M, µ) and constants ", T > 0, an (", T )-chain is a pair
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4

Figure 6.3: A point x 2 M is a chain recurrent point if there exists a closed (", T )-chain at x for every
", T > 0. An (", T )-chain is a sequence of points in state space, where each adjacent pair is connected by
a “long” trajectory segment (of duration greater than T ) and a “short” jump (of distance less than ").

of �nite sequences (x0, x1, . . . , xn) and (t1, t2, . . . , tn) satisfying

distµ

�
�ti

(xi�1), xi

�
< " and ti > T, i = 1, 2, . . . , n, (6.15)

where dist : M ⇥ M ! R is the Riemannian distance induced byµ. The chain recurrent set, denotedR(�),
consists of all points x 2 M for which an (", T )-chain with x = x0 = xn exists for every ", T > 0. •

The chain recurrent set plays a central role in describing the topological structure of a dynamical system
[126]. Our present interest in chain recurrence will revolve around the following powerful result.

Fact 6.3 (Long-Term Behavior of Asymptotically Autonomous Semi�ows, see [125]). Precompact forward
trajectories of an asymptotically autonomous semi�ow converge to the chain recurrent set of the limit semi�ow.

Remark 6.2.We de�ne chain recurrence using (", T )-chains with respect to a distance function and some
" > 0 because we rely on the results of [125], in which the same choice is made. In a complete Riemannian
manifold (our chosen setting), a set is precompact (i.e., has compact closure) if and only if it is bounded.

6.3 Main Results

We now present the main results of this chapter.

6.3.1 Almost Global Asymptotic Stability of Cascades

Theorem 6.1 (Almost Global Asymptotic Stability of Cascades). Consider a cascade on X ⇥ Y given by

ẋ = f(x, y), (6.16a)

ẏ = g(y). (6.16b)
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Suppose that (6.16b) and the unforced subsystem

ẋ = f(x, 0Y ) (6.17)

are almost globally asymptotically stable with respect to 0Y 2 Y and 0X 2 X respectively, while 0Y and all
chain recurrent points of (6.17) are hyperbolic equilibria. Moreover, suppose that every trajectory of the full
cascade (6.16a)-(6.16b) starting in X ⇥ B(0Y ) is bounded for all forward time. Then, (0X , 0Y ) is an almost
globally asymptotically stable and locally exponentially stable equilibrium of (6.16a)-(6.16b).

Proof. SinceX ⇥ B(0Y ) is invariant for (6.16a)-(6.16b) and all forward trajectories beginning inX ⇥ B(0Y )

are bounded, the cascade induces an autonomous semi�ow

 t : X ⇥ B(0Y ) ! X ⇥ B(0Y ). (6.18)

Similarly, (6.17) and (6.16b) induce the autonomous semi�ows

⇥t : X ! X, x0 7! pr1 � t(x0, 0Y ), (6.19a)

⌥t : B(0Y ) ! B(0Y ), y0 7! pr2 � t(0X , y0), (6.19b)

where pr1 and pr2 are the natural projections onto X and Y , and we have carefully chosen the domains
of the semi�ows. We observe that for each initial condition y0 2 B(0Y ), (6.16a) may be interpreted as
time-varying dynamics on X given by

ẋ = f
�
x,⌥t(y0)

�
. (6.20)

In this manner, each initial condition y0 2 B(0Y ) induces a corresponding nonautonomous semi�ow on X

given by
�

y0

(t,s) : X ! X, x0 7! pr1 � t�s

�
x0,⌥s(y0)

�
, (6.21)

such that we may also conclude

 t(x0, y0) =
�
�

y0

(t,0)(x0),⌥t(y0)
�
. (6.22)

Using these constructions, we prove the claim in �ve steps.

S��� 1. E( ) = R(⇥) ⇥ {0Y }, and all equilibria of  are hyperbolic, but only (0X , 0Y ) is stable.

All equilibria (x, y) 2 X ⇥ B(0Y )must have y = 0Y by the de�nition ofB(0Y ) as a basin of attraction, and
therefore f(x, 0Y ) = 0, i.e., x is an equilibrium of (6.17). The equality then follows from the assumption
that R(⇥) ✓ E(⇥), since equilibria are always chain recurrent, i.e., E(⇥) ✓ R(⇥). Denoting the vector
�eld on X ⇥ Y describing the full cascade (6.16a)-(6.16b) by F : (x, y) 7!

�
f(x, y), g(y)

�
, we may express
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its linearization at any equilibrium (x, 0Y ) 2 X ⇥ B(0Y ) as

dF |(x,0Y ) =

"
@xf

��
(x,0Y )

@yf
��
(x,0Y )

0 @yg
��
0Y

#
. (6.23)

Since the eigenvalues of a triangular block matrix are simply the eigenvalues of the blocks on the diagonal,
the hyperbolicity claim follows directly from the hyperbolicity of 0Y for (6.16b) and the hyperbolicity of
all equilibria of (6.17).

An almost globally asymptotically stable system has only one stable equilibrium (since all other equilibria
lie on the boundary of its basin of attraction). Therefore, at x = 0X all eigenvalues of the top left block have
negative real part, but one ormore eigenvalues at all other equilibria of (6.17) have positive real part. Hence
(0X , 0Y ) is locally exponentially stable and all other equilibria in X ⇥ B(0Y ) are unstable. To complete
the proof, it will thus su�ce to show that the equilibrium (0X , 0Y ) is almost globally attractive. H

S��� 2. For any y0 2 B(0Y ), the nonautonomous semi�ow �y0 is asymptotically autonomous, and its limit
semi�ow is ⇥.

For any sequences tj ! t, sj ! 1, and xj ! x, we have

lim
j!1

�
y0

(tj+sj ,sj)
(xj) = lim

j!1
pr1 � tj

�
xj ,⌥sj

(y0)
�

(6.24)

= pr1 � �
lim

j!1
tj

�
✓
lim

j!1
xj , lim

j!1
⌥sj

(y0)

◆
(6.25)

= pr1 � t(x, 0Y ) = ⇥t(x), (6.26)

where (6.24) follows immediately from (6.21), (6.25) is obtained by the continuity of pr1 and  , and (6.26)
relies on the attractivity of 0Y . Thus for any y0 2 B(0Y ), by de�nition �y0 is asymptotically autonomous
with limit semi�ow ⇥. H

S��� 3. Every trajectory of  converges to a hyperbolic equilibrium.

Together, Step 2, Fact 6.3, and the boundedness (hence, precompactness) of forward trajectories of imply
that for each y0 2 B(0Y ), every trajectory of �y0 converges to R(⇥), and asymptotic stability of (6.16b)
ensures that every trajectory of⌥ converges to 0Y . Thus, in view of (6.22) it is clear that every trajectory of
 converges toR(⇥) ⇥ {0Y }, and all points in this set are hyperbolic equilibria by Step 1. Since hyperbolic
equilibria are isolated, by continuity every trajectory converges to a particular hyperbolic equilibrium. H

S��� 4. Almost no trajectories of (6.16a)-(6.16b) converge to an unstable equilibrium.
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All points converging to a hyperbolic equilibrium lie on its global stable manifold, which (for an unstable
equilibrium) is the union of countably many embedded submanifolds of positive codimension (see [127,
p. 73] or [128, Sec. 2.1]). Hence, this is a meager set of measure zero. Also, all unstable equilibria in
X ⇥ B(0Y ) are hyperbolic by Step 1, and there are countably many of these equilibria due to the isolation
of hyperbolic equilibria and the second countability of X ⇥ B(0Y ) (see [129, Thm 2.50 and Prop. 3.11]).
Thus, the set of points inX ⇥ B(0Y ) converging to an unstable equilibrium is a countable union of meager
sets of measure zero and is thus meager (essentially by de�nition) and measure zero (see [4, p. 128]) in
X ⇥ Y . H

S��� 5. Almost every trajectory of (6.16a)-(6.16b) converges to the stable equilibrium (0X , 0Y ).

Since B(0Y ) is full measure and residual in Y by assumption, X ⇥ B(0Y ) is full measure and residual in
X ⇥ Y . By Step 3, every initial condition in this set converges to a hyperbolic equilibrium, and by Step
4, the subset converging to an unstable equilibrium is meager and measure zero in X ⇥ Y . Since the
di�erence of a residual set of full measure by a meager set of measure zero is residual and full measure,
the remainder constitutes a residual set of full measure in X ⇥ Y for which all initial conditions converge
to the unique stable equilibrium (0X , 0Y ), completing the proof. ⌅

Remark 6.3. The main potential pitfall of the driven subsystem being only almost globally asymptotically
stable is the possibility of “funneling” a non-negligible (i.e., non-meager or positive measure) set to a
point (x, 0Y ), where x is an unstable equilibrium of (6.17). However, such behavior is precluded by the
hyperbolicity of all unstable equilibria of (6.17). This can be relaxed to the requirement that all unstable
equilibria of (6.17) are isolated and have at least one eigenvalue with positive real part, similar to [124].
Then, the argument proceeds similarly, but relies on the center-stable manifold theorem instead of the
stable manifold theorem. Similarly, the hyperbolicity assumption on 0X can be relaxed at the cost of local
exponential stability. We present the more succinct but less general result in detail for clarity and brevity.

6.3.2 Extension to Upper Triangular Systems

In fact, much like analogous results for global asymptotic stability of cascades, our conclusions extend
immediately to upper triangular systems (i.e., cascade interconnections of cascade systems).

Corollary 6.1 (Almost Global Asymptotic Stability of Upper Triangular Systems). Consider an upper tri-
angular system evolving on X1 ⇥ X2 ⇥ · · · ⇥ Xn, given by

ẋ1 = f1(x1, x2, . . . , xn), (6.27a)

ẋ2 = f2(x2, . . . , xn), (6.27b)
. . .

ẋn = fn(xn), (6.27c)
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where for all i = 1, 2, . . . , n, the unforced system

ẋi = fi(xi, 0i+1, 0i+2, . . . , 0n) (6.28)

is almost globally asymptotically stable with respect to 0i 2 Xi and the chain recurrent set of (6.28) contains
only hyperbolic equilibria. Moreover, suppose that every trajectory of (6.27a)-(6.27c) is bounded for all for-
ward time. Then, (01, 02, . . . , 0n) is an almost globally asymptotically stable and locally exponentially stable
equilibrium of the upper triangular system (6.27a)-(6.27c).

Proof. The claim follows directly via induction. In particular, the claim is trivial for n = 1, and assuming
it holds for n = k � 1, the claim for n = k follows by Theorem 6.1 with (6.27a) as the driving subsystem
(6.16a) and (6.27b)-(6.27c) as the driven subsystem (6.16b), i.e., x = x1 and y = (x2, x3, . . . , xn). ⌅

6.4 Hypotheses of the Main Results

In this section, we explore the hypotheses of Theorem 6.1 and Corollary 6.1 further and in greater detail,
also showing some ways in which they may be veri�ed.

6.4.1 Gradient-Like Systems

A central assumption of Theorem 6.1 was that all chain recurrent points of (6.17) were equilibria. Such
systems are usually referred to as follows.

De�nition 6.6. An autonomous semi�ow � is called gradient-like if R(�) = E(�). •

The following fact shows that such a property is often easily veri�ed.

Fact 6.4 (Verifying Gradient-Like Systems). If E(�) consists of isolated points and there exists a proper,
continuous function V : M ! R that is decreasing along nonequilibrium trajectories, then � is gradient-like.

While we omit a proof of this fact, very similar notions have been discussed in slightly di�erent settings
in [124, Sec. IV], [130, Cor. 2.4], and [126, Sec. 7.12]. Above, we recall that a function V : M ! R is
proper if it has compact sublevel sets, which is analogous to the notion of “radially unbounded” functions
on Rn. Additionally, a function f : R ! R is decreasing if f(t2) < f(t1) whenever t1 < t2 (but this does
not imply ḟ(t) < 0 for all t, since t 7! �t3 is a counterexample).

Remark 6.4. From Fact 6.4, it is clear that Theorem 1 also holds if the assumption that (6.17) is almost
globally asymptotically stable and gradient-like is replaced by the existence of a Lyapunov function for
(6.17) around 0X which is decreasing along all nonequilibrium trajectories. Some authors [126,130] call this
a strict Lyapunov function, but the control community tends to reserve this term for Lyapunov functions
with strictly negative derivative along nonequilibrium trajectories [131].
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We now examine two important classes of gradient-like systems of particular relevance to geometric con-
trol design, which are already widely known to be almost globally asymptotically stable. Using Fact 6.4, we
verify the straightforward but less widely-known fact that such systems have a chain recurrent set consist-
ing solely of hyperbolic equilibria. The following facts are not particularly novel (see, e.g., the discussion
in [124, Sec. IV] and [130]), but they add context to our main result, so we present them for completeness.

No doubt the most obvious gradient-like system is, in fact, a gradient system. We recall the notion of a
navigation function (originally de�ned in [97]) from De�nition 5.4.

Proposition 6.1 (Gradient Systems). For a Riemannianmanifold (Q,), an origin 0Q 2 Q, a 0Q-navigation
function V , the dynamical system

q̇ = �grad V (q) (6.29)

is almost globally asymptotically stable and locally exponentially stable with respect to 0Q, and all chain
recurrent points of (6.29) are hyperbolic equilibria.

Proof. The almost global asymptotic stability of (6.29) with respect to 0Q is proved in [97, Proposition 2.1]
for compact Q. However, the extension to the noncompact case is immediate since the sublevel sets of V

are compact and forward invariant, since by direct computation,

V̇ = dV (�gradV ) = �
�
gradV, gradV

�
 0. (6.30)

Since the equilibria of (6.29) are simply the critical points of V , the nondegeneracy of the critical points
of Morse functions ensures hyperbolicity and therefore the local exponential stability of 0Q. Finally, since
V is decreasing on nonequilibrium trajectories and hyperbolic equilibria are isolated, Fact 6.4 implies that
the chain recurrent set of (6.29) is exactly the set of equilibria. ⌅

We now turn our attention to the important class of dissipative mechanical systems. Consider a fully-
actuatedmechanical system⌃ in the sense of De�nition 3.1, and prescribe the feedback fq(q̇) = �⌫[

(q̇) for
some Riemannian metric ⌫ (also called a “strict Rayleigh dissipation”). The resulting closed-loop dynamics
are then given by

rq̇ q̇ + grad V (q) = �] � ⌫[
(q̇). (6.31)

Such systems have been studied at length, since the introduction of arti�cial dissipation and potential
shaping via feedback can result in closed-loop dynamics with desirable limit behavior. In fact, closed
loop dynamics of this form have enabled trajectory tracking on arbitrary Lie groups [95] and have also
been present in the unforced and driving subsystems of cascaded geometric controllers for underactuated
robotic systems [96]—indeed, (6.31) is precisely the form of the error dynamics (5.35) in Theorem 5.1, the
main result on almost global asymptotic tracking in the previous chapter.

Proposition 6.2 (Dissipative Mechanical Systems). For a Riemannian manifold (Q,), an origin 0Q 2 Q,

122



a 0Q-navigation function V , and any Riemannian metric ⌫, the dynamical system (6.31) is almost globally
asymptotically stable and locally exponentially stable with respect to 0TQ = (0Q, 0) 2 TQ (i.e., the zero tan-
gent vector at 0Q), and all chain recurrent points of (6.31) are hyperbolic equilibria.

Proof. It is clear that the equilibrium set of (6.31) is precisely the image of the critical points of V in
the zero section of TQ, and moreover these equilibria can be veri�ed to be hyperbolic since ⌫ is a strict
linear dissipation and the critical points of a Morse function are nondegenerate. Moreover, only 0TQ is
(locally exponentially) stable, while all other equilibria are unstable, since 0Q is the unique minimum of
V . Considering the total energy function given by

W : (q, q̇) 7! V (q) + 1
2(q̇, q̇), (6.32)

we compute

Ẇ = dV (q)q̇ + (rq̇ q̇, q̇) (6.33)

= dV (q)q̇ + (�grad V (q) � ] � ⌫[
(q̇) , q̇) (6.34)

= dV (q)q̇ � dV (q)q̇ � ⌫(q̇, q̇) = �⌫(q̇, q̇)  0. (6.35)

For any trajectory t 7! q(t) of the Euler-Lagrange dynamics, (6.31) and strictness of ⌫ imply that the
quantity ⌫(q̇(t), q̇(t)) is strictly positive for almost all t if and only if the trajectory is nonequilibrium, soW

is decreasing along nonequilibrium trajectories. Thus, by Fact 6.4, the chain recurrent set of (6.31) is exactly
the set of equilibria. Becuase W is proper (since V is proper and ⌫ is positive de�nite) and nonincreasing
along trajectories, all forward trajectories are precompact and therefore converge to the chain recurrent set
[125]. Since hyperbolic equilibria are isolated, all trajectories converge to some equilibrium. Application
of the global stable manifold theorem shows that almost no trajectories converge to an unstable hyperbolic
equilibrium, so the unique stable equilibrium 0TQ is almost globally asymptotically stable. ⌅

For further discussion, we direct the reader to the seminal work [97] which studies the stability properties
and global behavior of such systems (in the more general setting of manifolds with boundary), as well as
the more recent reference [9, Chap. 6] which provides a comprehensive and detailed overview. Finally, we
note that a primary contribution of [97] is the observation that the global limit behavior of a dissipative
mechanical system is essentially determined by the global limit behavior of the associated gradient system,
which is often called the “lifting property” of dissipative mechanical systems [9]. Here, we have veri�ed
that a similar lifting property holds for these systems in regards to the chain recurrent set.

6.4.2 Boundedness of Forward Trajectories

Another central assumption of Theorem 6.1 was that all forward trajectories of the cascade are bounded.
While forward boundedness is guaranteed when the driven subsystem evolves on a compact manifold,
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to use Theorem 6.1 to certify the stability of a cascade evolving on a noncompact manifold (e.g. Rn or
any tangent bundle), we require compositional criteria for forward boundedness. In this section, we give
growth rate criteria suitable for our geometric setting on the “interconnection term”⌃h and a on Lyapunov
function for the unforced subsystem⌃x. The result is analogous to (and inspired by) [117, Thm. 4.7], which
certi�es forward boundedness inRn using the standard Euclidean norm. In a Riemannian manifold (X, µ),
we use instead the Riemannian distance and the dual norms on each tangent and cotangent space induced
by the metric. We denote both norms by || · ||µ.

Theorem 6.2 (Forward Boundedness of Cascades). Consider a cascade on X ⇥ Y given by

ẋ = f(x, y), (6.36a)

ẏ = g(y). (6.36b)

Suppose the following conditions hold on the subsystems:

⌃y : For (6.36b), 0Y 2 Y is a stable hyperbolic equilibrium.

⌃x : W : X ! R�0 is a proper Lyapunov function for

ẋ = f(x, 0Y ) (6.37)

such that for some constants � � 0, d0 � 1,

||dWx||
µ
dist(0X , x)  �W (x) (6.38)

for all (x, y) 2 {x 2 M : dist(0X , x) � d0} ⇥ B(0Y ).

⌃h : For some continuous maps ↵, � : B(0Y )!R�0 that are vanishing and di�erentiable at 0Y , the inter-
connection term h : (x, y) 7! f(x, y) � f(x, 0Y ) satis�es

||h(x, y)||
µ

 ↵(y) dist(0X , x) + �(y). (6.39)

Then, the trajectory of (6.36a)-(6.36b) through any initial condition (x0, y0) 2 X ⇥ B(0Y ) is bounded for all
forward time.

Proof. Since W is a proper Lyapunov function for (6.37), the forward trajectory through any initial condi-
tion of the form (x0, 0Y ) is bounded, so it su�ces to consider initial conditions (x0, y0) with y0 6= 0Y . Fix
(x0, y0) 2 X ⇥ B(0Y ) with y0 6= 0Y and let

�
x(t), y(t)

�
denote its forward trajectory.

S��� 1. There exist positive constants A and ! such that ↵
�
y(t)

�
+ �

�
y(t)

�
 Ae�!t for all t � 0.
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Let d(t) := dist(0Y , y(t)) > 0. Since 0Y is hyperbolic, there exist C0,! > 0 such that, for all t � 0,

d(t)  C0e
�!t. (6.40)

Next, since ↵ and � are vanishing and di�erentiable at 0Y , a local coordinate calculation (using uniform
equivalence of continuous Riemannian metrics over compact sets) shows

lim sup
t!1

↵
�
y(t)

�
+ �

�
y(t)

�

d(t)
< 1. (6.41)

The quotient in the previous limit is a continuous function of t and thus is bounded for all t � 0 by some
C1 > 0. With (6.40), this yields the desired bound with A := C0C1. H

S��� 2. W
�
x(t)

�
is bounded for all t � 0.

Since W is a Lyapunov function for (6.37), we have

Ẇ  dWx

�
h(x, y)

�
 ||dWx||

µ
||h(x, y)||

µ
(6.42)

 ||dWx||
µ

�
↵(y) dist(0X , x) + �(y)

�
, (6.43)

from (6.39). Hence, whenever dist(0X , x) � d0 � 1, we have

Ẇ  ||dWx||µ dist(0X , x)
�
↵(y) + �(y)

�
. (6.44)

De�ne W0 = sup{x : dist(0X ,x) d0} W (x) and consider any t2 � t1 � 0 where W (x([t1, t2])) ✓ [W0, 1).
Then for all t 2 [t1, t2], (6.38), (6.44), and the conclusion of Step 1 imply

d

dt
W
�
x(t)

�
 �Ae�!t W

�
x(t)

�
. (6.45)

By Grönwall’s inequality, we obtain the bound

W (x(t2))  e
R t2
t1

�Ae
-!t

dtW (x(t1))  e
�A

! W (x(t1)). (6.46)

This implies that for all t � 0,

W (x(t))  C := e
�A

! max
�
W0, W

�
x(0)

� 
. H

Thus, since W is proper and 0Y is attractive, it follows that
�
x(t), y(t)

�
is bounded for all t � 0. ⌅

Such amethod can be iterated (cf.Corollary 6.1) to check forward boundedness in upper triangular systems.
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6.5 Application of the Results

We now revisit the motivating example (6.8a)-(6.8b). It is easily veri�ed that (6.8b) takes the form of the
Euler-Lagrange dynamics (6.31) for the kinetic energy metric and Rayleigh dissipation  = ⌫ = d�⌦ d�

and the navigation function V : S1 ! R, � 7! 1 � cos�. Thus by Proposition 6.2, (6.8b) is almost globally
asymptotically stable and locally exponentially stable with respect to y = (�, �̇) = (0, 0), and moreover its
chain recurrent set consists solely of hyperbolic equilibria. Clearly, the same is true for x = (✓, ✓̇) = (0, 0)

with respect to the restriction of (6.8a) to y = (�, �̇) = (0, 0).

By Theorem 6.1, for almost global asymptotic stability it will su�ce to show forward boundedness, which
we accomplish using the total energy (6.32). The natural choice of metric on the tangent bundle X = TS1

is the Sasaki metric [105], i.e., ̃ = d✓ ⌦ d✓ + d ✓̇ ⌦ d ✓̇. Then, considering (without loss of generality) the
range of angles ✓ 2 [�⇡,⇡), we have

||dWx||̃ dist(0X , x) =

q
sin

2 ✓ + ✓̇2
q
✓2 + ✓̇2  ✓2 + ✓̇2  ⇡

2

2|{z}
�

(1 � cos ✓ + ✓̇
2

2 )| {z }
W (x)

,

since | sin ✓|  |✓| and ✓2  ⇡
2

2 (1 � cos ✓) for ✓ 2 [�⇡,⇡), verifying that (6.38) holds. Furthermore, we
compute

||h(x, y)||̃ = (1 � cos 2�)(sin ✓ + ✓̇)  (1 � cos 2�)
p
2| {z }

↵(y)

q
✓2 + ✓̇2

| {z }
dist(0X ,x)

, (6.47)

so (6.39) holds as well. Thus it follows by Theorem 6.2 that all forward trajectories of (6.8a)-(6.8b) with
y = (�, �̇) starting in the basin of attraction of (6.8b) are bounded, and so the system is almost globally
asymptotically stable and locally exponentially stable with respect to (0, 0, 0, 0) 2 TT2.

6.6 Discussion

The disturbance robustness of systems with some similar properties, and the connection to gradient-like
systems, was discussed in [124, Sec. IV]. However, those results (when combined with [116]) can only cer-
tify the stability of a cascade if the driven subsystem is almost globally input to state stable, requiring also
“ultimate boundedness” with respect to any bounded disturbance, absent from our motivating example.

Our main results show that an upper triangular system consisting of almost globally asymptotically stable,
gradient-like subsystems with no degenerate equilibria is itself almost globally asymptotically stable as
long as all forward trajectories are bounded. Since globally asymptotically stable systems are gradient-like
(with a single chain recurrent point at the stable equilibrium, a consequence of Fact 6.4 and the converse
Lyapunov theorems), our almost global result is closely analogous to Fact 6.2, the classic result on the
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global asymptotic stability cascades with bounded trajectories. Our second theorem generalizes a classic
compositional method of verifying forward boundedness using growth rate criteria on the interconnection
term and on a Lyapunov function for the unforced subsystem. Unfortunately, the Riemannian distance
function used in our condition can be di�cult to compute explicitly in complex examples, but even upper
and lower bounds on this distance could potentially be used to verify the inequalities.

Gradient-like dynamics are common in the closed-loop subsystems of geometric controllers (e.g., the con-
trollers proposed in Chapter 5 as well as in [95] and [96]). Indeed, since cascades of mechanical systems
with suitable dissipation and potential enjoy the required stability and chain recurrence properties, we see
promising directions for the constructive synthesis of cascaded geometric controllers with almost global
asymptotic stability for underactuated robotic systems, such as those possessing a geometric �at output
(such as quadrotors and aerial manipulators). As explored in Chapter 3, such systems enjoy a hierarchical
structure wherein the evolution of the system in the shape space is uniquely determined by the evolution
in the symmetry group, which may perhaps enable a change of variables to a cascade form, in a manner
similar to the hierarchical control example at the start of this chapter.

However, the stability certi�cates obtained in this chapter are not immediately applicable to the certi�ca-
tion of hierarchical tracking controllers, because at a minimum, the interconnection term will in general
be time-varying. Future work should explore how the ideas presented in this chapter might be extended
to this more general setting in order to enable compositional certi�cation of tracking controllers, whereas
the current results are only directly applicable to hierarchical designs for regulation. Nonetheless, the ob-
servations above provide evidence that our results in this chapter may have notable implications for the
systematic synthesis of controllers for complex underactuated systems.

6.7 Conclusion

In this work, we present su�cient conditions for the almost global asymptotic stability of a cascade in
which the subsystems are only almost globally asymptotically stable. The result is extended inductively to
upper triangular systems of arbitrary size. The approach relies on the forward boundedness of trajectories
(which can be veri�ed by growth rate criteria on the interconnection term and on a Lyapunov function for
the unforced subsystem) and the absence of chain recurrent points other than hyperbolic equilibria in the
unforced subsystem. The results are analogous to classic results for cascades of globally asymptotically
stable systems. The compositional nature of the criteria facilitates stability veri�cation for arbitrarily
complex cascades, so long as the subsystems enjoy certain fundamental properties.
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CHAPTER 7

SYMMETRY-ACCELERATED REINFORCEMENT LEARNING
FOR TRAJECTORY TRACKING CONTROL

The material in this chapter is based on the publication [132], co-authored with Nishanth Rao, Pratik
Kunapuli, Dinesh Jayaraman, and Vijay Kumar. The author of this thesis led the development of the

theoretical contributions and drafted the bulk of the original manuscript. Overall, Nishanth Rao, Pratik
Kunapuli, and the author of this thesis all contributed equally to the underlying publication [132].

7.1 Introduction

The last four chapters explored the synthesis of planning and control algorithms (or components thereof)
and the prediction of the behavior of dynamical systems (e.g., the closed-loop dynamics induced by a
particular control design) using analytical techniques. However, the methods pursued so far relied heavily
on assumptions on the structure of the system under consideration (e.g., di�erential �atness, full actuation,
or cascade structure). While many systems of both academic and practical interest enjoy such properties,
many others do not, or we may be ignorant of the right point of view from which they can be identi�ed.

In such circumstances, we may have no choice but to turn towards more �exible and generalized tools,
such as optimization-based control or data-driven methods, even if guarantees of performance are far
murkier or computational costs are far greater. We argue that in such settings, it is especially important
to leverage what little structure we can, in order to gain traction on the problem. In this chapter, we
explore how the symmetries enjoyed by free-�ying robotic systems can be used to mitigate the computa-
tional burden of training tracking controllers via reinforcement learning, by sharing experience between
“equivalent” states. Ultimately, our methods will improve sample e�ciency and also empirically yield
better-performing policies at convergence, likely due to the simpler structure of the control problem after
reducing the symmetry group. The methods in this chapter can be very broadly applied to an extremely
wide range of robotic systems, showing that even in very general settings (and for learning-based ap-
proaches), structured methods developed from a geometric perspective still have a role to play.

7.1.1 Learned Tracking Controllers

In contrast to analytically-designed control methodologies, controllers trained via reinforcement learn-
ing (RL) have relaxed structural assumptions while enabling real-time operation with moderate resources
[133]. In [91], the authors train a single hovering policy for deployment across a range of quadrotors,
generalizing satisfactorily to moving references. Meanwhile, massively parallel training of quadrupedal
walking policies from high-dimensional observations enabled startling robustness to uneven terrain [134],
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and learned controllers augmented with adaptive feedforward compensation have been shown to reject
large disturbances [93]. Unfortunately, these bene�ts come at a price: RL tends to scale poorly with the
size of the given Markov decision process (MDP), making it challenging to perform the exploration needed
to discover high-performance policies.

7.1.2 Symmetry in Reinforcement Learning

To mitigate this burden, an RL agent should share experience across all those states that can be considered
“equivalent” with respect to the reward and dynamics. Indeed, robotic systems enjoy substantial sym-
metry [46, 135, 136], which has been thoroughly exploited in analytical control design [15, 137, 138] and
optimization [139]. In fact, many learned controllers have leveraged symmetry in an ad hoc or approxi-
mate manner (e.g., penalizing the error between actual and reference states [91] or working in the body
frame [93]). More formally, the optimal policy of anMDPwith symmetry is equivariant (and its value func-
tion is invariant) [140], and neural architectures can be designed accordingly to improve sample e�ciency
and generalization [141].

Instead of incorporating symmetry into the network architecture, [142] proposed “MDP homomorphisms”,
which establish a mapping from the given MDP to one of lower dimension. There, a policy may be trained
more easily (using standard tools) and then lifted back to the original setting. Suchmethods were originally
restricted to discrete state and action spaces, necessitating coarse discretization of robotic tasks (which are
naturally described on smooth manifolds). [143] explored related ideas in continuous state and action
spaces, but assumed deterministic dynamics (whereas stochasticity is fundamental to many tasks). How-
ever, [144] recently extended the theory of homomorphisms of stochastic MDPs to the continuous setting,
recovering analogous value equivalence and policy lifting results. They also learned approximate homo-
morphisms from data, but do not give a su�cient condition to construct a well-behaved homomorphism
(i.e., for which the new state and action spaces are also smooth manifolds) from a continuous symmetry
known a priori (as is the case for free-�ying robotic systems [135]).

7.1.3 Overview and Contributions

In this chapter, we explore the role of the continuous symmetries of free-�ying robotic systems in learned
tracking control. After reviewing mathematical preliminaries in Sec. 7.2, in Sec. 7.3 we cast a general
tracking control problem as a continuous MDP, using a stochastic process to model the (a priori unknown)
reference trajectory. We show that this MDP inherits the symmetry enjoyed by the underlying dynamics
and running costs, and we prove that such symmetries can be used to construct an MDP homomorphism,
reducing the dimensionality. In Sec. 7.4, we apply this method to three physical systems (including aerial
and space robots), obtaining MDPs of reduced dimension that nonetheless capture the essential features
of the tracking problem. We then apply standard reinforcement learning techniques to learn policies for
these reducedMDPs, accelerating training, improving tracking accuracy, and generalizing zero-shot to new
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trajectories. We discuss our results and contributions in Secs. 7.5-7.6. Ultimately, we believe these insights
will facilitate the e�cient development of accurate tracking controllers for various robotic systems.

7.2 Mathematical Preliminaries

We begin by brie�y introducing some concepts of measure-theoretic probability. Throughout this chapter,
we largely follow the treatment of [144], which (along with the authors’ prior work [145]) extends [142] to
study homomorphisms of Markov decision processes with continuous (i.e., not discrete) state and action
spaces. Thus, we refer to [144, Appx. B] for amore complete overview of the basic topological andmeasure-
theoretic tools used in this chapter. However, we brie�y mention the basics.

7.2.1 Measure Theory and Probability

For any given set X , the power set, denoted 2
X , is the set containing all subsets of X . The following class

of subsets of the power set are suitable for working with probability.

De�nition 7.1. A subset F ✓ 2
X is called a �-algebra if:

1. ? 2 F ,

2. X \ B 2 F for all B 2 F , and

3. for all countable collections B1, B2, . . . 2 F , it holds that (
S1

i=1 Bi) 2 F. •

In particular, B(X) denotes the Borel �-algebra of a topological space X , which is de�ned as the smallest
�-algebra containing all open (or equivalently, closed) subsets of X . In probability theory, each element
of a �-algebra represents an event whose probability can be measured.

De�nition 7.2. P(X) is the set of Borel probability measures on X , i.e., maps µ : B(X) ! [0, 1] such that:

1. µ(?) = 0,

2. µ(X) = 1,

3. for all countable, disjoint collections B1, B2, . . . 2 B(X), we have
P1

i=1 µ(Bi) = µ (
S1

i=1 Bi) . •

For example, the Dirac measure �x 2 P(X) of any given element x 2 X is de�ned by

�x(B) =

8
<

:
1, x 2 B,

0, x 62 B.
(7.1)

Moreover, given µ1 2 P(X1) and µ2 2 P(X2), the product measure µ1 ⇥ µ2 2 P(X1 ⇥ X2) is the unique
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measure de�ned such that for all B1 2 B(X1) and B2 2 B(X2), we have

(µ1 ⇥ µ2)(B1 ⇥ B2) = µ1(B1)µ2(B2). (7.2)

For a function f : X ! R and a probability measure µ 2 P(X), the expectation of f over µ is given by

E
x⇠µ

[ f ] =

Z

X

f dµ. (7.3)

We direct the reader to [144, Appx. B] for further details on probability and measure theory.

7.2.2 Continuous Markov Decision Processes

De�nition 7.3 (see [144]). A continuous Markov decision process14 is a tuple M = (S, A, R, ⌧, �), where:

• the state space S is a smooth manifold,

• the action space A is a smooth manifold,

• the instantaneous reward is R : S ⇥ A ! R,

• the transition dynamics are ⌧ : S ⇥ A ! P(S), and

• the discount factor � is a value in the interval [0, 1). •

Starting from state st and taking action at, the probability that the post-transition state st+1 is contained
in a set B 2 B(S) is given by ⌧(B | st, at) 2 [0, 1].

De�nition 7.4. A policy for M is a map ⇡ : S ! P(A). The action-value function Q⇡
: S ⇥ A ! R of a

given policy ⇡ is de�ned by

Q⇡
(s, a) = E

⌧⇠⇡

" 1X

t=0

�tR(st, at)

��� s0 = s, a0 = a

#
, (7.4)

where ⌧ ⇠ ⇡ denotes the expectation over both the transitions and the policy (i.e., st+1 ⇠ ⌧( · | st, at) and
at ⇠ ⇡( · | st) for all t 2 N). If a policy ⇡⇤ satis�es

⇡⇤ = argmax
⇡

E
⌧⇠⇡

" 1X

t=0

�tR(st, at)

��� s0 = s

#
. (7.5)

for all s 2 S, we say it is an optimal policy. •
14The more general de�nition in [144] does not assume S and A are smooth manifolds, nor that ⌧( · | s, a) is a Borel measure.

For our purposes, the present level of generality is all we will need.
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7.2.3 Homomorphisms of Markov Decision Processes

The following describes a powerful link between two continuous MDPs (of perhaps di�erent dimensions).

De�nition 7.5 (Continuous MDP Homomorphism, [144, Def. 11]). Consider two continuous MDPs

M = (S, A, R, T, �), fM =
�eS, eA, eR, e⌧ , �

�
(7.6)

and a pair of maps p : S ! eS and h : S ⇥ A ! eA. We call (p, h) : M ! fM a continuous MDP homomor-
phism if p and the maps hs : a 7! h(s, a) for each s 2 S are measurable, surjective maps, such that

R
�
s, a

�
= eR

�
p(s), h(s, a)

�
, (7.7a)

⌧
�
p�1

( eB) | s, a
�
= e⌧

� eB | p(s), h(s, a)
�

(7.7b)

for all s 2 S, a 2 A, and eB 2 B(eS). •

Furthermore, policies for two di�erent continuous MDPs can be related in the following manner.

De�nition 7.6 (Policy Lifting, [144, Def. 14]). Consider a continuous MDP homomorphism (p, h) : M !
fM and a policy e⇡ for fM. A policy ⇡ for M is called a lift of e⇡ if

⇡
�
h�1

s ( eA) | s
�
= e⇡

� eA | p(s)
�

(7.8)

for all s 2 S and A 2 B(A). •

MDP homomorphisms facilitate the synthesis and certi�cation of an optimal policy for the “upstairs” MDP
M from an optimal policy for the “downstairs” MDP fM, via the following powerful theorem.

Theorem7.1 (Value Equivalence [144, Thms. 12 and 16]). Let (p, h) : M ! fM be anMDP homomorphism
and ⇡ be any lift of some policy e⇡ for fM. Then,

Q⇡
(s, a) = eQe⇡�p(s), h(s, a)

�
. (7.9)

Moreover, if e⇡ is optimal for fM, then ⇡ is optimal for M.

Subsequently, we often omit the word “continuous” for brevity, since we consider only this setting.

7.2.4 Lie Group Symmetries of Markov Decision Processes

A group action can describe a symmetry of some object de�ned on the manifold. We now formulate the
following de�nition of a Lie group symmetry of a continuous MDP.
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De�nition 7.7. Consider an MDP M = (S, A, R, ⌧, �) and let the G act on S and A via Lie group actions
� and  respectively. We call (�, ) a Lie group symmetry of M if, for all �-invariant sets B 2 B(S),

R
�
s, a

�
= R

�
�g(s), g(a)

�
, (7.10a)

⌧
�
B | s, a

�
= ⌧

�
B |�g(s), g(a)

�
. (7.10b)

for all s 2 S, a 2 A, and g 2 G. •

Remark 7.1. The quali�er “�-invariant” on B broadens the class of symmetries considered (and is more
general than [140] and [141], as noted in [146, Def. 35]). The deterministic case (i.e., when ⌧( · | st, at) is
the Dirac measure corresponding to {st+1} ✓ S) gives the intuition, since then (7.10b) requires the image
of any orbit in S ⇥ A to lie within some orbit in S, without enforcing equivariance within each orbit.

7.3 Tracking Control Problems with Symmetry

In this section, we formulate a general trajectory tracking problem as an MDP that models the evolution
of both the physical and reference systems. We give a su�cient condition for this MDP to have a Lie group
symmetry that will be used (in Sec. 7.3.3) to reduce the problem’s dimensionality.

De�nition 7.8. A tracking control problem is a tuple T = (X, U, f, JX , JU , ⇢, �), where:

• the physical state space X is a smooth manifold,

• the physical action space U is a smooth manifold,

• f : X ⇥ U ! P(X) is the the physical dynamics (i.e., xt+1 ⇠ f( · | xt, ut) describes the system’s
evolution),

• JX : X ⇥ X ! R is the tracking cost,

• JU : U ⇥ U ! R is the e�ort cost,

• ⇢ 2 P(U) is the reference action distribution, and

• � 2 [0, 1) is the discount factor. •

The distribution ⇢ is not a traditional part of the notion of a tracking control problem, but it will play an
essential role in our approach (see Remark 7.2).

Going forward, we will use the following system as a running example to illustrate the theoretical concepts
and the impact of a symmetry-informed approach (even for a simple system).
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Example 7.1 (Particle). Consider a particle in R3 with mass m subject to a controlled external force
(sometimes used as a reduced-order model for a quadrotor or rocket [93]). The state

x = (r, v) 2 X = TR3 ' R3 ⇥ R3 (7.11)

consists of the particle’s position and velocity, and the control input is the applied force u 2 U = R3. The
(deterministic) equations of motion, when discretized with timestep dt, are given by

rt+1 = rt + vt dt, vt+1 = vt +
1
m

ut dt, (7.12)

so the transition probabilities f : TR3 ⇥ R3 ! P(TR3
) can be expressed using a Dirac measure as

f(B | x, u) :=

8
<

:
1, (r + v dt, v +

1
m

u dt) 2 B,

0, otherwise.
(7.13)

For some chosen constants cr, cv, cu � 0, we de�ne the running costs

JTR3

�
(r, v), (rd, vd)

�
:= ↵(r � rd) + cv

����v � vd
����, (7.14a)

JR3(u, ud
) := cu

����u � ud
����, (7.14b)

where ↵(y) := cr

����y
����+ tanh(ar

����y
����) � 1. Selecting a covariance ⌃ and a discount factor 0  � < 1, we

de�ne the tracking problem T =
�
TR3,R3, f, JTR3 , JR3 , N (0,⌃), �

�
. •

7.3.1 Modeling a Tracking Control Problem as a Markov Decision Process

Two essential considerations in the modeling of the tracking control problem are the following:

1. we assume the reference trajectory is unknown a priori and is thus unavailable at training time, and

2. we desire a time-invariant policy, so the tracking problem should not depend explicitly on time.

We accomodate these considerations by formulating the trajectory tracking task in the following manner.
Our formulation is also illustrative in Fig. 7.1.

De�nition 7.9. A given tracking control problem T =
�
X, U, f, JX , JU , ⇢, �

�
induces a tracking control

MDP MT = (S = X ⇥ X ⇥ U, A = U, R, ⌧, �), where:

• the state is given by (x, xd, ud
) 2 X ⇥ X ⇥ U , where x, xd 2 X are the actual and reference states

and ud 2 U is the reference action,

• the actions are a = u 2 U (i.e., the actual action),
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Figure 7.1: We model the tracking control problem using an MDP that governs the evolution of both the
physical system (governed by the physical dynamics, subject to the chosen actions) and the reference
trajectory (governed by the physical dynamics, subjected to randomly sampled actions). We seek a policy
which selects the actual control actions, conditioned upon an extended state (composed of the actual and
reference states and the reference actions), in order to minimize accumulated tracking and e�ort costs.

• the instantaneous reward R : S ⇥ A ! R is given by

R
�
(x, xd, ud

), u
�
:= �JX(x, xd

) � JU (u, ud
), (7.15)

• and the transitions ⌧ : S ⇥ A ! �(S) are de�ned by

xt+1 ⇠ f( · | xt, ut), xd
t+1 ⇠ f( · | xd

t , u
d
t ), ud

t+1 ⇠ ⇢, (7.16)

i.e., the actual state, reference state, and reference inputs are sampled independently. •

Remark 7.2. This formulation allows us to model a tracking control problem over a broad class of ref-
erence trajectories (i.e., those generated by a certain stochastic process) as a single stationary MDP (i.e.,
with time-invariant transitions and reward). While we could also formulate a (non-stationary) MDP cor-
responding to a particular reference trajectory by making the tracking cost a function of time t and the
actual state x, an optimal policy for that MDP would be useless for tracking other references. In Sec. 7.4.2,
we will show empirically that policies trained in the proposed manner also e�ectively track pre-planned
reference trajectories, for which the sequence of reference actions {ud

0 , u
d
1 , u

d
2 , · · · } is chosen to induce a

pre-selected state trajectory {xd
0 , x

d
1 , x

d
2 , · · · }.
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Example 7.1 (Particle, continued). The state and inputs of MT for Particle are given by

�
(r, v), (rd, vd), ud

�
2 S = TR3 ⇥ TR3 ⇥ R3, u 2 A = R3. (7.17)

Following (7.12) and (7.16), the transitions dynamics are given by

rt+1 = rt + vt dt, vt+1 = vt +
1
m

ut dt, (7.18a)

rdt+1 = rdt + vdt dt, vdt+1 = vdt +
1
m

ud
t dt, ud

t+1 ⇠ N (0,⌃), (7.18b)

while the reward is easily computed as

R(s, a) = �↵(r � rd) � cv

����v � vd
����� cu

����u � ud
����, (7.19)

following (7.14) and (7.15). •

7.3.2 Lie Group Symmetries of Tracking Control MDPs

In this section, we will show that the MDP induced by a tracking control problem with certain symmetries
will inherit a related symmetry with certain convenient properties. Towards this end, we �rst prove the
following helpful lemma on group actions built out of other group actions.

Lemma 7.1. Suppose that the action of G on M via ⌥ is free and proper. Then, the diagonal action of G on
M ⇥ M given by

� :
�
g, (m1, m2)

�
7!

�
⌥g(m1),⌥g(m2)

�
(7.20)

is also free and proper. Suppose also that the action of H on N via ⇥ is free and proper. Then, the product
action of G ⇥ H on M ⇥ N given by

⇧ :
�
(g, h), (m, n)

�
7!

�
⌥g(m),⇥h(n)

�
(7.21)

is also free and proper.

Proof. It is easily veri�ed that (7.20) and (7.21) satisfy the identity and compatibility conditions necessary
to be a valid group action.

We �rst show that the actions are free. Suppose that �g(m1, m2) = (m1, m2). Then it is clear from (7.20)
that⌥g(m1) = m1 (and hence g = eG, since⌥ is free). Likewise, suppose ⇧(g,h)(m, n) = (m, n). Then it
is clear from (7.21) that ⌥g(m) = m and ⇥h(n) = n (and hence (g, h) = (eG, eH) = eG⇥H , since ⌥ and
⇥ are free). Thus, ⇧ and � are free.
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We now show that the actions are proper. By de�nition, a group action � : G ⇥ X ! X is proper if

�̂ : G ⇥ X ! X ⇥ X, (g, x) 7!
�
�g(x), x

�
(7.22)

is a proper map (i.e., the preimage of any compact set is compact). Since smooth manifolds are locally
compact and Hausdor�, the product of continuous proper maps between them is also proper [147, §1.5].
Observing that

⇧̂ : (g, h, m, n) 7!
�
⌥g(m),⇥h(n), m, n

�
(7.23)

is (up to permutation of the components) the product map of ⌥̂ and ⇥̂, it follows that ⇧ is proper. Addi-
tionally, since ⌥ is proper, for every compact C ✓ M, the set

G⌥
C = {g 2 G : C \⌥g(C) 6= ?} (7.24)

is compact [4, Prop. 21.5]. Considering any compact subset L ✓ M ⇥ M ⇥ M ⇥ M, we de�ne the set

K = pr1(L) [ pr2(L) [ pr3(L) [ pr4(L). (7.25)

We may then verify that

�̂
�1

(L) ✓ �̂
�1

(K ⇥ K ⇥ K ⇥ K) (7.26)

= {(g, m1, m2) : ⌥g(m1),⌥g(m2), m1, m2 2 K} (7.27)

✓ G⌥
K ⇥ K ⇥ K. (7.28)

To complete the argument, it su�ces to note that the continuity of �̂ implies that �̂�1
(L) is a closed subset

of the compact set G⌥
K

⇥ K ⇥ K and is thus compact. ⌅

We now present this section’s main result.

Theorem 7.2 (Lie Group Symmetries of Tracking Control MDPs). Consider a tracking control problem
T = (X, U, f, JX , JU , ⇢, �), and let ⌥ : K ⇥ X ! X and ⇥ : H ⇥ U ! U be Lie group actions on the
physical state and input spaces. Suppose that:

• JX is ⌥-invariant and JU is ⇥-invariant, i.e., for all x, xd 2 X , u, ud 2 U , k 2 K , and h 2 H ,

JX(x, xd
) = JX

�
⌥k(x),⌥k(x

d
)
�
, JU (u, ud

) = JU

�
⇥h(u),⇥h(u

d
)
�
, (7.29)

• and for each (k, h) 2 K ⇥ H , there exists k0 2 K such that for all (x, u) 2 X ⇥ U and B 2 B(X),

f
�
⌥k0(B) | x, u

�
= f

�
B |⌥k(x), h(u)

�
. (7.30)
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Let the direct product group G = K ⇥ H act on S = X ⇥ X ⇥ U and A = U respectively via the actions

�(k,h)(x, xd, ud
) :=

�
⌥k(x),⌥k(x

d
),⇥h(u

d
)
�
, (7.31a)

 (k,h)(u) := ⇥h(u). (7.31b)

Then, (�, ) is a Lie group symmetry of MT . Moreover, suppose additionally that ⌥ and ⇥ are free and
proper. Then � is also a free and proper group action.

Remark 7.3. Becausewe do not assume that k0
= k, (7.30) is amore general requirement than equivariance

of the transitions. However, k0 must depend only on k and h, and not on x and u.

Proof of Theorem 7.2. From (7.15), we compute the transformed reward as

R
�
�(k,h)(s), (k,h)(a)

�
= �JX

�
⌥k(x),⌥k(x

d
)
�

� JU

�
⇥h(u),⇥h(u

d
)
�

(7.32)

= �JX(x, xd
) � JU (u, ud

) = R(s, a), (7.33)

where we have substituted in (7.31) and simpli�ed using (7.29). Thus, (7.10a) holds. Considering now the
transitions, we note that (7.16) can also be written using the product measure as

⌧
�

· | (x, xd, ud
), u

�
= f( · | x, u) ⇥ f( · | xd, ud

) ⇥ ⇢. (7.34)

We then apply the group action (7.31) to the transition dynamics as written in (7.34) and compute

⌧
�

· |�(k,h)(s), (k,h)(a)
�
= f

�
· |⌥k(x),⇥h(u)

�
⇥ f

�
· |⌥k(x

d
),⇥h(u

d
)
�
⇥ ⇢ (7.35)

= f
�
⌥k0( · )| x, u

�
⇥ f

�
⌥k0( · )| xd, ud

�
⇥ ⇢, (7.36)

where (7.36) follows from (7.30). Thus, considering any �-invariant set B 2 B(S), in view of (7.36) and
the fact that B = �g(B) for all g 2 K ⇥ H by de�nition, we have

⌧
�
B |�(k,h)(s), (k,h)(a)

�
=

⇣
f
�
⌥k0( · )| x, u

�
⇥ f

�
⌥k0( · )| xd, ud

�
⇥ ⇢

⌘
� �(k0�1,eH)(B) (7.37)

=
�
f( · | x, u) ⇥ f( · | xd, ud

) ⇥ ⇢
�
(B) = ⌧

�
B | s, a

�
, (7.38)

where (7.38) follows directly from the de�nition of� in (7.31a). Thus, (7.10b) holds as well, and thus (�, )

is a Lie group symmetry of MT .

It remains to show that � is free and proper when ⌥ and ⇥ are free and proper. Let � be the diagonal
action of⌥ (i.e., �k = ⌥k ⇥⌥k). Then � is the product action of � and⇥ (i.e., �(k,h) = �k ⇥⇥h). It then
su�ces to apply Lemma 7.1 twice to show that � and ultimately � are free and proper actions. ⌅

Example 7.1 (Particle, continued). Considering the Lie groups K := TR3 (with the obvious group
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operation inherited from its identi�cation with R3 ⇥ R3) and H := R3, we let a K-action on S = TR3

and an H-action on A = R3 be given by the left action of the groups on themselves, i.e.,

⌥k(r, v) := L(k1,k2)(r, v) = (r + k1, v + k2), (7.39a)

⇥h(u) := Lh(u) = u + h, (7.39b)

which are free and proper. It is clear that the tracking and e�ort costs (7.14) are invariant to these actions,
i.e., (7.29) holds. Moreover, for any B 2 B(TR3

), we have

f
�
B |⌥k(x),⇥h(u)

�
= f

�
B | (r + k1, v + k2), u + h

�
(7.40)

=

8
<

:
1,

�
r + k1 + (v + k2) dt, v + k2 +

1
m
(f + h) dt

�
2 B,

0, otherwise.
(7.41)

=

8
<

:
1,

�
r + v dt, v +

1
m

f dt
�

2 B �
�
k1 + k2 dt, k2 +

1
m

h dt
�
,

0, otherwise.
(7.42)

= f
�
⌥k0(B) | x, u

�
, k0

= �(k1, k2) � (k2,
1
m

h) dt. (7.43)

Thus, the transitions satisfy (7.30). In the manner of (7.31), the group actions (7.39) induce actions of
G = K ⇥ H = TR3 ⇥ R3 on S and A, given respectively by

�(k,h)(s) := (r, v, rd, vd, ud
) + (k1, k2, k1, k2, h), (7.44a)

 (k,h)(a) := ud
+ h. (7.44b)

Thus, by Theorem 7.2, (�, ) is a Lie group symmetry ofMT for Particle, and� is free and proper. •

7.3.3 MDP Homomorphisms Induced by Lie Group Symmetries

Wewill use the following theorem to show that symmetries of a tracking controlMDP can be used to reduce
its dimensionality via a homomorphism and also give an explicit formula for policy lifting. Although
related results are known in the discrete [142] and deterministic [143] settings, we require a more general
result due to our continuous state and action spaces and the random sampling of the reference actions
(even when the underlying dynamics f are deterministic). The following theorem is illustrated in Fig. 7.2.

Theorem 7.3 (Reduction of Lie Group Symmetries in Continuous MDPs). Let (�, ) be a Lie group sym-
metry of an MDPM = (S, A, R, ⌧, �). Suppose that� is free and proper and � : S ! G is any15 equivariant

15Since � need not be continuous, it can be constructed from a collection of local trivializations of the principal G-bundle
p : S ! S/G [6, §9.9]. Note that S here is the total space of the bundle (not the quotient or “shape” space, as in earlier chapters).
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Q U O T I E N T  S P A C E

Figure 7.2: A visualization of Theorem 7.3 in the deterministic case, i.e., st+1 = ⌧(st, at). Using a Lie
group symmetry (�, ), we construct a continuous MDP homomorphism from the “upstairs” MDPM to a
“downstairs” MDP fM that is a lower-dimensional, lossless abstraction. Theorem 7.1 from [144] guarantees
that a (sub)optimal policy for fM, when lifted to an “upstairs” policy for M, is equally (sub)optimal.

map, and de�ne the maps

p : S ! S/G, s 7! �G(s), (7.45a)

h : S ⇥ A ! A, (s, a) 7!  �(s)�1(a). (7.45b)

Then, (p, h) : M ! fM is an MDP homomorphism with fM =
�eS = S/G, eA = A, eR, e⌧ , �

�
, where we de�ne

eR(s̃, ã) := R
�
s, �(s)(ã)

� ��
s2 p�1(s̃), (7.46a)

e⌧( eB | s̃, ã) := ⌧
�
p�1

( eB) | s, �(s)(ã)
� ��

s2 p�1(s̃), (7.46b)

where the right-hand sides of (7.46a) and (7.46b) are independent of the particular choice of s. Moreover, for
any policy e⇡ for fM, a policy for M that is a lift of e⇡ can be given by

(e⇡)"(A | s) := e⇡
�
 �(s)�1(A) | p(s)

�
. (7.47)

Proof. Because � is free and proper, S/G is a smooth manifold of dimension dimS � dimG [4, Thm.
21.10]. We �rst verify that eR and e⌧ are well-de�ned (i.e., their values do not depend on the particular
choice of s 2 p�1

(s̃)). Since p maps states to �-orbits, for any s1, s2 2 p�1
(s̃), there exists some g 2 G
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such that s1 = �g(s2). Thus, following (7.46a), we compute

R(s̃, ã) = R
�
s1, �(s1)(ã)

�
(7.48)

= R
�
�g(s2), �(s2) � g(ã)

�
(7.49)

= R
�
�g(s2), g�(s2)(ã)

�
(7.50)

= R
�
s2, �(s2)(ã)

�
= R(s̃, ã), (7.51)

where (7.49) follows from the the invariance of the reward, (7.50) follows from the equivariance of �, and
(7.51) uses the invariance of the reward again. Similarly, from (7.46b), we compute

e⌧( eB | s̃, ã) = ⌧
�
p�1

( eB) | s1, �(s1)(ã)
�

(7.52)

= ⌧
�
p�1

( eB) |�g(s2), g�(s2)(ã)
�

(7.53)

= ⌧
�
p�1

( eB) | s2, �(s2)(ã)
�
= e⌧( eB | s̃, ã), (7.54)

where (7.54) follows from (7.10b), since for any eB 2 B(eS), p�1
( eB) 2 B(S) is a �-invariant Borel set.

We now verify that (p, h) is an MDP homomorphism. Since for each g 2 G, the map  g is a di�eomor-
phism, hs is measurable and surjective for each s 2 S. On the other hand, p is surjective by construction
and measurable because orbits of proper actions are closed [4, Cor. 21.8]. Since clearly s 2 p�1

�
p(s)

�
, it

follows directly from (7.45b) and (7.46a) that

eR
�
p(s), h(s, a)

�
= R

�
s, �(s) � �(s)�1(a)

�
= R(s, a),

hence (7.7a) holds. We verify (7.7b) similarly, since by (7.45b) and (7.46b),

e⌧
� eB | p(s), h(s, a)

�
= ⌧

�
p�1

( eB) | s, �(s) � �(s)�1(a)
�
= ⌧

�
p�1

( eB) | s, a
�
. (7.55)

Thus, (p, h) : M ! fM is an MDP homomorphism. Finally, to see that (e⇡)" is a lift of e⇡, we compute

(e⇡)"
�
h�1

s ( eA) | s
�
= (e⇡)"

�
 �(s)(

eA) | s
�

(7.56)

= e⇡
�
 �(s)�1 � �(s)(

eA) | p(s)
�
= e⇡

� eA | p(s)
�
, (7.57)

where (7.56) follows directly from (7.45b) and the fact that g is a di�eomorphism for all g 2 G, and (7.57)
follows directly from (7.47). ⌅

Remark 7.4. In the case that  is the trivial action, (p, h) will in fact be a special case of MDP homo-
morphism known as a “bisimulation relation” (see [144, Def. 4] and discussion therein). Moreover, the
condition that � is free and proper is required in order to ensure that the state space of the “downstairs”
MDP is also a smooth manifold. Notably, a corresponding assumption is absent from the hypothesis of
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analogous results on symmetry reduction in discrete MDP’s (see, e.g., [141]). This is because the quotient
space of a discrete space by an equivalence relation arising from a discrete group action is always another
discrete space, even though the orbits of the group action may, for example, be of non-uniform cardinality.

7.4 Application to Free-Flying Robotic Systems

In this section, we apply the abstract results of the previous section to reduce the dimensionality of tracking
control MDPs for several free-�ying robotic systems, visualized on the left-hand side of Fig. 7.3.

7.4.1 Quotient MDPs for Tracking Control Problems

We now formulate the tracking control MDPs for three example tracking control problems, and apply our
approach to obtain a reduction of dimensionality. In particular, we will apply Theorem 7.2 to identify a
certain kind of Lie group symmetry of the tracking control MDP, Theorem 7.3 to parlay this symmetry into
a continuous MDP homomorphism (thereby reducing the dimension of the MDP) and obtain a formula for
policy lifting, and Theorem 7.1 (from [144]) to certify the value equivalence of the lifted policy.

Example 7.1 (Particle, continued). Using the symmetry (7.44) of MT for the Particle, we will con-
struct an MDP homomorphism using Theorem 7.3. To do so, we �rst de�ne the maps

�
�
(r, v), (rd, vd), ud

�
:=

�
(rd, vd), ud

�
, (7.58)

p
�
(r, v), (rd, vd), ud

�
:= (r � rd, v � vd). (7.59)

It is easily veri�ed that � is equivariant and p maps each state s to its �-orbit. We now de�ne a quotient
MDP fMT as described in Theorem 7.3, where the state and actions of fMT are given by

s̃ = (re, ve) 2 eS = S/G ' TR3, ã = ue 2 eA = R3. (7.60)

From (7.45b) and (7.58), we may derive

h(s, a) =  (�rd,�vd,�ud)(u) = u � ud. (7.61)

Since clearly
�
(re, ve), (0, 0), 0

�
2 p�1

(re, ve), from (7.46a), (7.44b), and (7.58) we may construct the re-
duced reward as

eR(s̃, ã) = R
�
s, �(s)(ã)

� ���
s=((re,ve),(0,0),0)

= �↵(re) � cv

����ve
����� cu

����ue
����. (7.62)

Likewise, a straightforward calculation using (7.18), (7.44b), and (7.46b) will show that the reduced transi-
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tions are given by

e⌧( eB | s̃, ã) = ⌧
�
p�1

( eB) | s, �(s)(ã)
� ���

s=((re,ve),(0,0),0)

=

8
<

:
1, (re + ve dt, ve + 1

m
ue

dt) 2 eB,

0, otherwise,
(7.63)

which is nothing but the usual “error dynamics” [95] governing the state-valued error in Def. 5.6, i.e.,

ret+1 = ret + vet dt, vet+1 = vet +
1
m

ue
t dt. (7.64)

Finally, by Theorem 7.3, (p, h) is an MDP homomorphism from MT to fMT =
�
TR3,R3, eR, e⌧ , �

�
, and

moreover we may lift any policy e⇡ for fMT to fM using (7.47), obtaining

(e⇡)"(A | s) = e⇡(A � ud | r � rd, v � vd). (7.65)

By Theorem 7.1, the action-value function for (e⇡)" satis�es

Q(e⇡)"
(s, a) = eQe⇡�

(r � rd, v � vd), u � ud
�
. (7.66)

In summary, an optimal policy for the Particle can observe only the position and velocity error and
augment the result with the reference force. For a deterministic “downstairs” policy ⇡̃, this would result
in a lifted policy of the form u = (e⇡)"(s) = ⇡̃(r � rd, v � vd) + ud. •

While the Particle example was chosen to be deliberately simple for illustrative purposes, we now turn
our attention to somewhat more realistic examples of free-�ying robotic systems.

Example 7.2 (Astrobee [148]). This space robot has state x = (q, ⇠) in X = SE(3) ⇥ R6, where q is the
system’s pose as a homogeneous transform and ⇠ = (!, v) is the system’s twist (i.e., its angular and linear
velocities). The action u = (µ, f) in U = R6 is the control wrench, where µ is the applied torque in the
body frame and f is the applied force in the world frame. The dynamics are given by

qt+1 = qt exp(⇠̂t dt), (7.67a)

vt+1 = vt +
1
m

ft dt, !t+1 = !t + J�1
(µt � !t ⇥ J!t) dt, (7.67b)

where ·̂ : R6 ! se(3) is the “hat map” sending twists to the Lie algebra. The running costs are de�ned by

JX(x, xd
) := ↵(r � rd) + cR

���� log(RTRd
)
���� + c⇠

����⇠ � ⇠d
����, (7.68a)

JU (u, ud
) := cu

����u � ud
����, (7.68b)
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where r and R are the R3 and SO(3) components of q. Letting ⇢ = N (0,⌃) for some covariance ⌃, we
may construct MT as in Def. 7.9.

Next, let K = SE(3) and H = {e} (the trivial group) act on X and U respectively via the group actions

 k(q, ⇠) := (kq, ⇠), ⌥h(w) := w. (7.69)

It can easily be veri�ed that these are free and proper actions for which (7.29) and (7.30) also hold. Using
Theorem 7.2 to derive a symmetry of MT as in (7.31), we apply Theorem 7.3 with � : s 7! q to ultimately
obtain an MDP homomorphism (p, h), where hs = id for all s = (q, ⇠, qd, ⇠d, ud

) 2 S, and

p(s) :=
�
q�1qd, ⇠, ⇠d, ud

�
. (7.70)

Thus, an optimal policy (and its Q function) can be written

(e⇡)"(A | s) = e⇡
�
A | (q�1qd, ⇠, ⇠d, ud

)
�
, (7.71)

Q(e⇡)"
(s, a) = eQe⇡�

(q�1qd, ⇠, ⇠d, ud
), u

�
, (7.72)

where ⇡̃ is an optimal policy for the reduced tracking control MDP fMT . In summary, an optimal policy
for the Astrobee can be expressed using an observation that sees only the error between the actual and
reference poses, instead of observing these poses separately. •

Example 7.3 (Quadrotor [25]). Analogous to Example 3.3, this aerial robot has the same state space
as the Astrobee, but the actions are the “single-rotor thrusts” u 2 U = R4. The dynamics and running
costs are as given in (7.67) and (7.68), but with the applied force and torque given by

ft =

2

64
0

0

u1
t + u2

t + u3
t + u4

t

3

75 , µt =

2

64
` (u1

t � u3
t )

` (u2
t � u4

t )

c (u1
t � u2

t + u3
t � u4

t )

3

75 , (7.73)

while the translational dynamics in (7.67) are replaced by

vt+1 = vt +
�
1
m

ft � Rt
T
(g e3)

�
dt, (7.74)

where g is the magnitude of gravitational acceleration and e3 = (0, 0, 1).

Gravity “breaks” the SE(3) symmetry of the system, but preserves the subgroup of SE(3) given by

K 0
=

("
rotz(✓) r

0 1

#
: (r, ✓) 2 R3 ⇥ S1

)
(7.75)
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which is isomorphic (as a Lie group) to the direct product SE(2) ⇥ R. This subgroup inherits an action on
SE(3) ⇥ R6 via the restriction of (7.69). Using Theorems 7.2 and 7.3, we may derive an MDP homomor-
phism (p, h) for which hs = id for all s = (q, ⇠, qd, ⇠d, ud

) 2 S and p : S ! S/G is given by

p(s) := (q�1qd, R T
e3, ⇠, ⇠

d, ud
), (7.76)

where we note that R T
e3 is nothing but the gravity direction expressed in body coordinates. Thus, an

optimal policy (and its Q function) can be written

(e⇡)"(A | s) = e⇡
�
A | (q�1qd, R T

e3, ⇠, ⇠
d, ud

)
�
, (7.77)

Q(e⇡)"
(s, a) = eQe⇡�

(q�1qd, R T
e3, ⇠, ⇠

d, ud
), u

�
. (7.78)

where ⇡̃ is an optimal policy for fMT . In summary, our theory demonstrates that for quadrotors, the state
space of the tracking problem can be reduced by replacing the reference and actual poses with the pose
error and the body-frame gravity vector, without degrading the best-case learned policy. Consider how this
di�ers fromheuristic approximations in priorwork such as [91], whose state included the entire orientation
R (incompletely reducing the symmetry) and replaced the actual and reference angular velocities with the
velocity error, which corresponds to an approximate symmetry due to the “cross terms” in the Euler rotation
equations in (7.67), which are small for small angular velocities. •

7.4.2 Numerical Experiments

To explore the e�ects of our symmetry-informed approach on sample e�ciency and the performance of
trained policies, we perform numerical experiments in which we apply a standard reinforcement learning
algorithms to the reduced tracking control MDPs for the three example systems.16

RL environments were implemented for each of the tracking control MDPs in Examples 7.1-7.3, writ-
ten in jax [150] for performance. To implement environments for the quotient MDP arising from re-
duction by a symmetry group, we modify each environment’s observation to the reduced state given in
(7.59), (7.70), and (7.76), whereas the baseline sees the full-state observation (x, xd, ud

). As indicated re-
spectively by (7.65)-(7.66), (7.71)-(7.72), and (7.77)-(7.78), we also modify (i.e, lift) the actions generated
by the learned policy and those passed to the action-value function (which was necessary only for the
Particle, since the MDP homomorphisms for the other two systems were bisimulation relations). For
the Particle environment, we further isolate the e�ects of reduction by di�erent subgroups of the
symmetry given in (7.44) by also implementing environments where the reduction is by translational
symmetry alone (i.e., p(s) := (r � rd, v, vd, ud

)) and by translational and velocity symmetry alone (i.e.,
p(s) := (r � rd, v � vd, ud

)).
16The reinforcement learning environments described in this section were developed by Pratik Kunapuli and Nishanth Rao,

who also performed the numerical experiments described in this section [149]. All code necessary to reproduce these experiments
is open source, available at https://pratikkunapuli.github.io/EQTrackingControl/.
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Table 7.1: Comparison of RMS Tracking Error on Planned Trajectories

Environment G r [cm] v [cm/s] R [rad] ! [rad/s]

Particle

Baseline 298.3 ± 1.2 103.0 ± 1.1 - -

R3 10.0 ± 0.1 4.8 ± 0.1 - -

TR3 9.8 ± 0.2 4.3 ± 0.0 - -

TR3 ⇥R3 8.3 ± 0.18.3 ± 0.18.3 ± 0.1 3.9 ± 0.23.9 ± 0.23.9 ± 0.2 - -

Astrobee
Baseline 10.4 ± 1.0 6.0 ± 1.0 0.75 ± 0.01 0.24 ± 0.02

SE(3) 1.3 ± 2.71.3 ± 2.71.3 ± 2.7 3.3 ± 3.13.3 ± 3.13.3 ± 3.1 0.37 ± 0.040.37 ± 0.040.37 ± 0.04 0.16 ± 0.060.16 ± 0.060.16 ± 0.06

Quadrotor
Baseline 66.3 ± 3.2 41.3 ± 2.5 0.48 ± 0.02 0.25 ± 0.02

SE(2)⇥R 28.4 ± 4.128.4 ± 4.128.4 ± 4.1 19.6 ± 3.119.6 ± 3.119.6 ± 3.1 0.25 ± 0.050.25 ± 0.050.25 ± 0.05 0.12 ± 0.010.12 ± 0.010.12 ± 0.01

We report the mean and standard deviation (over 10 training seeds) of the
trained policy’s RMS tracking error (for a dataset of 20 planned trajectories). The
baseline policies correspond to reduction by the trivial group (i.e., no reduction).

We use a custom implementation of Proximal Policy Optimization (PPO) [151] with the same hyperparam-
eters across all variants of each environment. During training, the reference actions are sampled from a
stationary distribution (as in Def. 7.9), while during evaluation, we measure the performance of the policy
obtained on pre-planned dynamically feasible reference trajectories. Fig. 7.3 and Table 7.1 report total
reward (during training) and average tracking error (during evaluation) when starting from a randomly
sampled initial state. Rollouts of trained policies are visualized at https://youtu.be/AosGBe2uzxM.

7.5 Discussion

There is a clear pattern in the left-hand plots of Fig. 7.3: as we increase the dimension of the symme-
try group by which we reduce the tracking control MDP, we see an improvement in sample e�ciency.
Moreover, the tracking error evaluation shown in Table 7.1 and the right-hand plots of Fig. 7.3 follow a
similar trend, in which performance at (or near) convergence improves with greater symmetry exploita-
tion. For the Particle, the vast majority of this bene�t is achieved by reduction of the translational
symmetry, although incorporating the velocity and force symmetries yields modest additional gains. This
seems consistent with the large improvement we see for the Astrobee and Quadrotor after reduction
by (a subgroup of) SE(3), although future work could also consider reducing a larger symmetry group that
incorporates a linear velocity symmetry for these systems as well. It’s worth noting that careful reward en-
gineering or hyperparameter tuning might improve the performance of all trained policies (especially the
baselines, which currently perform relatively poorly). However, we instead focus on analyzing the bene�t
of exploiting symmetry for a �xed reward. Nonetheless, any reward depending only on the reduced state
s̃ = p(s) would preserve the symmetry.
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Particle

(a) Training curves (left) and evaluation results (right) for Particle.

Astrobee

(b) Training curves (left) and evaluation results (right) for Astrobee.

Quadrotor

(c) Training curves (left) and evaluation results (right) for Quadrotor.

Figure 7.3: To evaluate our approach, we compare baseline policies (trained directly on the original tracking
control MDP) with symmetry-informed policies (trained on the reduced tracking control MDP and lifted
to the original setting). We report mean reward and standard deviation during training (over 10 training
seeds) and, for the best-performing seed, mean tracking error during evaluation (for 20 trajectories), with
translational errors as solid lines and rotational errors as dashed lines.
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Our approach assumes that at deployment, an upstream planner provides dynamically feasible reference
trajectories. For the (underactuated) Quadrotor, these trajectories are planned using di�erential �at-
ness [25] from Lissajous curves in the �at space. However, in theory any other method (e.g., direct colloca-
tion [20]) could be used to generate a suitable reference. We expect our policies to generalize well to a wide
range of upstream planning methodologies, and future work should explore this hypothesis. Going for-
ward, we also hope to apply these methods to new robot morphologies that are too complex for real-time
numerical optimal control or for which no closed-form analytical controllers are known (whereas explicit
geometric controllers have been shown to perform quite well, even comparably to learned controllers, for
simple systems like quadrotors [94]). To enable such applications, a more uni�ed treatment of the reduc-
tion of tracking control MDPs for multibody robotic systems would be bene�cial, instead of applying our
abstract results on symmetries of tracking control MDPs (Theorems 7.2 and 7.3) individually to each robot
morphology (as we did in Sec. 7.4.1).

7.6 Conclusion

In this chapter, we have exploited the natural Lie group symmetries of free-�ying robotic systems to mit-
igate the challenges of training trajectory tracking controllers via reinforcement learning. We formulate
the tracking problem as a single stationary MDP, proving that the underlying symmetries of the dynam-
ics and running costs permit the reduction of this MDP to a lower-dimensional problem. When learning
tracking controllers for space and aerial robots, training is accelerated and tracking error is reduced after
the same number of training steps. We believe our theoretical framework provides insight into the use of
RL for systems with symmetry in robotics applications.
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CHAPTER 8

CONCLUSION

In this dissertation, we have developed a range of methods enabling dynamically feasible trajectory plan-
ning and trajectory tracking controller synthesis for mechanical systems, which have signi�cant bearing
on the control of free-�ying robotic systems, especially those that are underactuated. While a wide range
of formal tools were brought to bear on these problems, a recurring theme was the use of di�erential ge-
ometry to develop abstractions in an explainable and structured manner, thereby capturing only the most
essential features of the problem and ultimately leading to computationally e�cient solutions.

8.1 The Recurring Theme of Abstraction

At this point, it’s worth revisiting in more detail the theme of abstraction described in the introduction,
and examining how it has played out within the body of this thesis. In the case of �atness-based methods,
a �at output can be thought of (at least locally) as a minimal representation of the family of dynamically
feasible trajectories. We developed methods of systematically constructing such abstractions (instead of
guessing them individually for particular systems), and moreover of ensuring that the abstraction we ob-
tain preserves symmetries found in the original system. Such abstractions also a�orded a deeper insight
into the role of robot morphology in enabling tractable solutions to control problems, as explored in the
setting of trajectory planning for underactuated aerial manipulators, and the insights obtained in regards
to the mechanical design of such systems for “task �atness” or stable internal dynamics.

In our work synthesizing explicit tracking controllers for fully-actuated systems, the central ingredient
in the approach was �nding a means of reducing the tracking control problem to the “easier” problem of
regulation (i.e., stabilizing an equilibrium). In particular, we showed that this can be done on amore general
class of manifolds than previously understood (something of a “Goldilocks” setting, in which we have just
enough structure, but no more than necessary), enabling the broader application of such methods while
also a�ording a deeper conceptual understanding of existing approaches. Such a reduction from tracking to
regulation is inherently lossy, since the chosen control action must be independent of the absolute state of
the system, depending instead on the error alone. However, we demonstrate that the asymptotic behavior
of the closed-loop system is still as desired, and the control policy can be written down explicitly.

Moreover, in our work analyzing (and exploiting) the symmetries of tracking control problems, we showed
that for some systems, optimal tracking control policies indeed need only to observe the error between
particular reference and actual states (and thus, in some cases, working with error states is in fact lossless).
We also showed that compositional tools for stability certi�cation in cascade systems can be reformulated
in a more general “almost global” manner, the natural setting for systems evolving on manifolds. Our
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conclusions were analogous to classical global results on cascade stability, identifying circumstances in
which we can analyze a more complex system via properties of its constituent subsystems. We believe our
results in this direction will ultimately have a role to play in certifying the stability of complex hierarchical
controllers built out of simpler subsystem controllers.

8.2 Limitations and Future Work

The methods presented herin rely fundamentally on exploiting structural properties of the system under
consideration. Thus, their limitations are most keenly apparent in regards to systems which do not enjoy
these properties (or exhibit them only in an approximate sense). For example, our su�cient conditions
for �atness are formulated for mechanical systems in the absence of dissipation (however, other methods
[36] have been developed for working with �at systems perturbed by unmodeled disturbances, e.g., air
resistance). Moreover, essentially all of these methods require an accurate model of the system to be
controlled—including the reinforcement learning approach of Chapter 7, since the poor sample e�ciency
of so-called “model-free” RL necessitates training in simulation (i.e., using a model), introducing a host of
well-known challenges for transferring policies to the real-world system.

The contributions of this thesis are primarily theoretical and computational in nature, and thus the most
urgent direction for future work is to operationalize these insights and implement them on practical robotic
systems, in order to determine the extent to which they are applicable in real-world scenarios. However,
it must be noted that many of the methods proposed in this work generalize or systematize existing ad
hoc approaches that have already been demonstrated on real robot hardware (and are, in some cases,
ubiquitous). Thus, in addition to the mathematical and computational results presented herein, we have
strong reasons to believe that our approaches will be suitable for practical applications, but this hypothesis
must be tested empirically.

Towards such practical ends, the computational maturation of many of the methods developed herein is
essential. For example, developing more robust software capable of applying our su�cient conditions for
�at output construction from Chapter 3 to arbitrary robotic systems (described in a standard modeling for-
mat) would allow practitioners to leverage these tools, even without signi�cant expertise in the geometric
methods used in their development. Similarly, while the customized reinforcement learning environments
developed for the numerical experiments of Chapter 7 were highly optimized for the particular systems
considered, it would be bene�cial (and relatively straightforward) to integrate the insights obtained into
more generalized reinforcement learning environments that already integratemultibody dynamics engines
(e.g., Isaac Gym [152]), in order to apply them more broadly.

In a di�erent vein, the mechanical design criteria for underactuated aerial manipulators discovered in
Chapter 4 suggest that signi�cant improvements in dynamic and dexterous manipulation tasks can be
achieved not only via more sophisticated control algorithms, but also via control-informed system design.
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Figure 8.1: In-progress prototype of a 2-joint aerial manipulator, designed to meet the task �atness criteria
of Chapter 4, towards the goal of agile 6-DoF aerial manipulation. In particular, the custom electronics were
developed in collaboration with Jack Campanella, who designed the printed circuit board layout [153], and
Saibernard Yogendran also contributed to the development of actuator communication �rmware.

In our ongoing work, we have developed a hardware prototype of a quadrotor equipped with a 2-DoF
manipulator arm (see Fig. 8.1), targeted towards highly dynamic manipulation tasks. This system has been
designed with “task �atness” in mind (i.e., ensuring that the end e�ector pose is a �at output of the system)
by distributing the vehicle’s mass symmetrically around the intersection of the two joints in the arm. This
intersection occurs at the center of a di�erential gearbox, which transmits torques from two powerful
brushless motors located on the vehicle body (and arranged symmetrically about the sagittal plane of the
robot), keeping the arm lightweight. In order to tightly coordinate the control of both the vehicle and the
arm degrees of freedom (jointly recruiting e�ort from both the propellers and the internal joint actuators),
custom software and electronics have been developed to integrate all sensors and actuators directly with an
onboard computer running real-time Linux. In our ongoing work, we pursue dynamic manipulation tasks
with this platform, in hopes of operationalizing the design criteria of Chapter 4, the subsystem tracking
controller designs of Chapter 5, and the cascade stability certi�cates of Chapter 6.

In a broader sense, the control algorithms developed in this thesis aim to achieve greater generality and
computational e�ciency by leveraging the structural properties of mechanical systems. In that sense, the
physical characteristics of the system under consideration inform control design. Conversely, the mechan-
ical design criteria obtained in Chapter 4 constitute feedback in the opposite direction, in which mathe-
matically rigorous control insights inform physical morphology design, at least for a particular class of
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systems (i.e., aerial manipulators). However, this feedback is essentially parametric (helping us to choose
the link lengths, center of mass position, etc.), and we lack a means of automatically synthesizing a com-
pletely new aerial robot morphology suited to a particular task. In the future, we hope to tighten (and also
generalize) this feedback loop, achieving yet a stronger interplay between control design and morphology
design for robotic systems. Indeed, in Nature, behavior and morphology evolve in tandem, and we aspire
to the same for robotic systems—not only in terms of computational methods of co-design, but also in
regards to a deeper conceptual understanding of the functional impact of design choices in both domains.
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